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Summary: 
  
The AncestryDNA science team has developed a fast, sophisticated, and accurate method for 
estimating the historical origins of customers’ DNA going back several hundred to over 1,000 
years. Our newest approach improves upon our previous version in the number of possible 
regions that a customer might be assigned (from 43 to 60) as well as an increase in accuracy to 
both regions assigned and the percentage assigned to each region. We have added many new 
regions as well as made improvements to the composition of our reference panel, resulting in 
more accurate estimates overall. Given the cutting-edge nature of this type of science, we will 
continue to refine our approach and improve estimates. 
  
The basic idea behind ethnicity estimation involves comparing a customer’s DNA to the DNA of 
people with long family histories in a particular region or group, what we call the reference 
panel, and looking for segments of DNA that are most similar. If, for example, a section of a 
customer’s DNA looks most similar to DNA in the reference panel from people from Sweden, 
that section of the customer’s DNA is said to be from Sweden, and so on. The end result is a 
portrait of a customer’s DNA made up of percentages of the 60 ethnicities contained in the 
reference panel. 
  
That is a short version of how AncestryDNA determines a customer’s ethnicity estimate. The 
rest of the white paper will delve more deeply into 
  
1.       How the reference panel samples are chosen, their makeup, and how the panel is 
validated 
2.       How the algorithm that determines a customer’s genetic ethnicity works and how it is 
validated 
 
 
 



 
 
 
 
 
 

1. Introduction 

Genetic ethnicity estimates that determine which populations in a reference panel are most 

similar to someone’s DNA are a major component of the DNA Story provided by AncestryDNA. 

As its name suggests, DNA Story provides customers with insights into their past by analyzing 

their DNA.  

AncestryDNA has employed a team of highly trained scientists with backgrounds in population 

genetics, statistics, machine learning, and computational biology to develop a fast, 

sophisticated, and accurate method for estimating genetic ethnicity for our customers. In this 

document, we describe the approach we use to estimate customers’ genetic ethnicity. We will 

discuss the development of the reference panel we compare each customer sample against, the 

inference method we apply to estimate genetic ethnicity, and finally the extensive testing 

regimen we employ to assess the quality of our estimates.  

Glossary 

Admixed ​— Having ancestry from multiple populations. 
Allele​ — A variant in the DNA sequence. For example, a SNP (defined below) could have two alleles: A 
or C. 
Centimorgan (cM) ​— A unit of genetic length in the genome. Two genomic positions that are a 
centimorgan apart have a 1% chance during each meiosis (the cell division that creates egg cells or 
sperm) of experiencing a recombination event between them.  
Chromosome​ — A large, inherited piece of DNA. Humans typically have 23 pairs of chromosomes with 
one copy of each pair inherited from each parent. 
Genome​ — All of someone’s genetic information; the DNA on all chromosomes 
Genotype​ — A general term for observed genetic variation either for a single site or the whole genome. 
Haplotype​ — A stretch of DNA along a chromosome 
Hidden Markov model (HMM)​ — A statistical model for determining a series of hidden states based on a 
set of observations 
Locus​ — A location in the genome. It could be a single site or a larger stretch of DNA. 
Microarray​ — ​a DNA microarray is a way to analyze hundreds of thousands of DNA markers all at once. 
Nucleotide​ — DNA is composed of strings of molecules called nucleotides (also called bases).  There 
are four different types and they are usually represented by their initials: A, C, G, T. 
Population​ — A group of people 



 
 
 
 
 
 
Recombination​ — Before chromosomes are passed down from parent to child, each pair of 
chromosomes usually exchange long segments between one another and then are reattached in a 
process called recombination.  
Single nucleotide polymorphism (SNP)​ — A single position (nucleotide) in the genome where different 
variants (alleles) are seen in different people. 

2. Reference Panel 

2.1 Calculating an Ethnicity Estimate 

Two chromosomes from the same geographic region or the same population will share more DNA with 

one another than will two chromosomes from different regions or groups. So two pieces of DNA with a 

historical connection to Sweden will have more DNA in common than will a piece of DNA from Korea and 

a piece of DNA from Sweden. This is the basic premise behind the ethnicity estimate AncestryDNA 

provides to its members.  

To create the ethnicity estimate, we compare a customer’s DNA to a panel of DNA from people with 

known origins (referred to as the reference panel) and look to see which parts of the customer’s DNA are 

similar to those from people represented in groups in the reference panel. If, for example, a section of a 

customer’s DNA is most similar to the reference panel samples from Senegal, then we identify that 

section of the customer’s DNA as coming from Senegal. 

The accuracy of our ethnicity estimate depends on the quality of our reference panel. Because of this, 

AncestryDNA has invested a significant amount of effort in developing the best possible set of reference 

samples.  



 
 
 
 
 
 

 

Figure 2.1: Reference Panel Refinement Cycle.​ Schematic of the ethnicity estimation reference panel refinement cycle. In ​step 1 

we select candidate reference samples from published data, the AncestryDNA customer list, and the AncestryDNA proprietary 

reference collection. For AncestryDNA samples we rely on pedigree data to select those with deep ancestry from a single 

population. In ​step 2​ we filter out pieces of DNA between closely related samples from the candidate list. In ​step 3​ we use principal 

component analysis (PCA) to remove samples that show a disagreement in pedigree and genetic origin. We also use PCA to guide 

the identification of population groups. In ​step 4​ the panel is performance tested using numerous metrics and compared to the 

previous release. The final result is a high-quality, well-tested reference panel. The entire procedure is cyclic, and AncestryDNA will 

continue to make improvements to the panel with the goal of providing the most accurate ethnicity estimation possible with the data 

available. 

The rest of section 2 describes the steps taken to develop our current reference panel, including sample 

selection, quality control, and testing. The ethnicity update that we describe here is not only an update of 

the reference panel from our 2018 version but also increases the number of global regions from 43 to 60. 

2.2 Who should be included in the reference panel? 

Identifying the best candidates for the reference panel is key to providing the most accurate ethnicity 

estimate possible from a customer’s DNA sample. Under perfect circumstances, we would construct our 

reference panel using DNA samples from people who lived hundreds of years ago. Unfortunately, it is not 

yet possible to reliably sample historical populations in this way. Instead, we must rely on DNA samples 

collected from people alive today and focus on those who can trace their ancestry to a single geographic 

location or population group.  



 
 
 
 
 
 

When asked to trace familial origins, most people can only reliably go back one to five generations, 

making it difficult to find individuals with knowledge about more distant ancestry. This is because as we 

go back in time, historical records become sparse, and the number of ancestors we have to follow 

doubles with each generation. 

Fortunately, knowing where someone’s recent ancestors were born is often a sufficient proxy for much 

deeper ancestry. In the recent past, it was much more difficult and thus less common for people to 

migrate large distances. Because of this, the birthplace of a person’s recent ancestors often represents 

the location of that person’s deeper ancestral DNA. 

AncestryDNA Reference Panel Candidates 

In developing the most recent AncestryDNA ethnicity reference panel, we began with a candidate set of 

close to 97,000 samples. First, we examined over 1,000 samples from 52 worldwide populations from a 

public project called the Human Genome Diversity Project (HGDP) (Cann ​et al​. 2002; Cavalli-Sforza 

2005), over 1,800 samples from 20 populations from the 1000 Genomes Project (McVean ​et al.​, 2012), 

and over 900 samples from 91 populations from the Human Origins dataset (​Lazaridis et al. Nature 2014​) 

Second,​ we examined samples from a proprietary AncestryDNA reference collection as well as 

AncestryDNA samples from customers who had previously consented to research. Most of the candidates 

were selected from the last two groups only after their family trees confirmed that they had a long family 

history in a particular region or within a particular group. A small number of candidates were selected 

without a deep family tree, but these passed the rigorous vetting process outlined below.  Although it was 

not possible to confirm family trees for HGDP, Human Origins, and 1000 Genomes Project samples, 

these datasets were explicitly designed to sample a large set of distinct population groups representing a 

global picture of human genetic variation. 

Reference Panel Candidates from Admixed Populations 

In some parts of the world many indigenous people also have ancestry from multiple continents. For 

example, people of Amerindian descent in North and South America may have some ancestry from 

Europe and Africa. When creating reference panel regions reflecting geographic regions for the Americas 

and Oceania, we wanted to use only the parts of the genome with ancestry from the indigenous 

populations. We did this by looking at our previous ethnicity assignments and choosing only the segments 

of DNA (or windows) where both chromosomes had assignment to an ethnicity region corresponding to 

https://reich.hms.harvard.edu/sites/reich.hms.harvard.edu/files/inline-files/2014_Nature_Lazaridis_EuropeThreeAncestries.pdf


 
 
 
 
 
 
the indigenous population. So, whereas most of our regions use DNA from the entire genome of each 

candidate, for regions from admixed populations we only use a fraction of each person’s genomes. The 

ethnicity regions where we employ this approach are Indigenous Americas-North, Indigenous 

Americas-Mexico, Indigenous Americas-Yucatan, Indigenous Puerto Rico, Indigenous Haiti & Dominican 

Republic, Indigenous Cuba, Indigenous Americas–Central, Indigenous Americas-Andean, Indigenous 

Americas–Colombia & Venezuela, Indigenous Americas-Southeast, Samoa, Tonga, Polynesia, 

Melanesia, and Guam. 

2.3 Reference Panel Quality Control 

For each sample, we analyzed a set of approximately 300,000 SNPs that are shared between the Illumina 

OmniExpress platform and the Illumina HumanHap 650Y platform, which was used to genotype HGDP 

samples. After samples with large amounts of missing data were removed, we filtered out those which 

were likely to degrade the performance of the reference panel. Samples were typically removed because 

they were closely related to another reference sample or the underlying genetic information about a 

sample’s origins disagreed with the family tree data. 

When we perform genetic ethnicity estimation, we are interested in computing the probability that a 

particular segment of DNA, an observed haplotype, came from each possible source population in the 

reference panel (see Section 4 below). In other words, what are the odds that this particular stretch of 

DNA came from Sweden? Or France? Or any of the other regions we test? 

To do this, we need to estimate the frequency of this haplotype in each population, and this requires that 

people in the reference panel not be closely related. This is because DNA segments shared as a result of 

recent ancestry, as identified through identity by descent (IBD), do not represent independent haplotypes 

in a population, so retaining them can distort the estimates of population haplotype frequencies. This is 

why we remove such segments for candidates that share more than a certain amount of IBD DNA (20 

cM). Details about our approach for detecting shared segments of IBD DNA can be found in our 

AncestryDNA Matching white paper 

(https://www.ancestry.com/corporate/sites/default/files/AncestryDNA-Matching-White-Paper.pdf).  

Next, we remove​ ​samples from the reference panel candidate set when the genetic data about ethnicity 

disagrees with what that person has reported about their ethnicity​–​when underlying genetic information 

disagrees with the pedigree data. We identify these outliers using two approaches: (1) we identify clear 



 
 
 
 
 
 
outliers using our previous ethnicity estimate version, and (2) we use principal component analysis (PCA). 

PCA is frequently used for exploratory data analysis in population genetics research (Jackson 2003). 

When applied correctly to genotype data, PCA can capture the genetic variation separating distinct 

populations (Patterson 2006). 

We apply PCA to the samples that have made it through the previous screening processes and plot the 

early stages of the analysis, the “first four principal components,” as a series of scatter plots. We color 

each sample by their population of origin, determined by pedigree for Ancestry samples and by sample 

label for public samples (see Figure 3.3). 

. 

Figure 2.2: PCA Analysis on European Panel Candidates.​ Scatter plot of the first two components from a principal component 

analysis (PCA) of candidate European samples for the AncestryDNA reference panel. Visual inspection of PCA is useful for 

numerous aspects of data QC. First, it can be used to identify individual outliers, such as the EasternEurope/Russia  samples 

(yellow triangles) that appear in the middle of the GermanicEurope (green triangles) cluster. It can also be useful for identifying poor 

sample grouping. Finally, it can reveal regions where there is limited genetic separation and clusters overlap (e.g. Ireland/Scotland 

and England, Wales & Northwestern Europe) and regions that can be further subdivided. 

Each population tends to form a cluster of points (each point is a sample) in the scatter plot. This is 

because points that are more genetically similar are closer in PCA space. Helpfully, these clusters of 

points tend to match geography as well because most people are genetically more similar to others from 

nearby. Furthermore, these plots quickly reveal outlier samples which are not near other samples from 



 
 
 
 
 
 
the same population. For example, the yellow triangles in the green triangle cluster indicate samples with 

family trees from Eastern Europe, but their DNA is more similar to people from Germany. These are 

examples where the specified population of origin disagrees with the genetic origin represented in PCA 

space. 

We visually inspect candidates for removal based on a scatterplot like the one in Figure 2.2. Because 

different collections of samples reveal different amounts of population structure, PCA and outlier removal 

are repeated for different subsets of data. We first remove outliers at the global level (all samples 

together), then at the continental level (e.g., outliers in a PCA using only European samples), then at the 

regional level (e.g., outliers in a PCA of all Scandinavian samples), and finally at the population level (e.g., 

outliers from a PCA of Norway). 

2.4 Iterative Reference Panel Refinement 

After removing PCA outliers, we divide our global reference panel into populations corresponding to 

distinct genetic clusters in the PCA plots. Before using the reference set to estimate ethnicities of 

AncestryDNA customers, we first determine its quality by measuring the performance of our ethnicity 

estimation on the reference set itself. How well does our ethnicity estimation do on samples that by 

definition are 100% of a single ethnicity? 

To do this, we remove 5% of samples from the reference panel and estimate their ethnicity using the 

remaining 95% of samples as the new reference panel. We repeat this process 20 times, each time 

removing a different 5% of the panel and estimating their genetic ethnicities using the remaining 95%. 

We then look at the average predicted ethnicity for samples from each region in the reference set using 

the results of these cross-validation experiments. Figure 2.3 shows the results of this experiment as box 

plots. 



 
 
 
 
 
 

 

Figure 2.3: 20-fold cross-validation analysis of the Ethnicity 2019 reference panel.​ Here we plot the results of an experiment in 

which 5% of samples are removed from the reference panel, and their ethnicity is estimated using the remaining (95%) panel 

samples. Each boxplot represents the distribution of estimated ethnicity for all samples from a given region (75%, 50%, and 25% 

percentiles of estimated ethnicity). For the majority of samples in each region, we predict on average 80.5% of the genetic ethnicity 

to be from the correct region. And for the most part, the other 19.5% comes from nearby regions. However, there are exceptions. In 

particular, our average prediction accuracy for samples for​ Indigenous Cuba and Mongolia & Central Asia-North ​are not quite as 

high. There are many factors affecting the accuracy of these numbers, most importantly the number of reference samples in the 

panel for each region and the genetic distinctness of each region. 

 

The purpose of this analysis is twofold. First, reference panel samples with extremely poor performance in 

the cross-validation analysis are removed, as they may poorly represent their ethnic group of origin. 



 
 
 
 
 
 
Second, the cross-validation experiments allow us to demonstrate our ability to accurately estimate the 

ethnicities of our reference panel samples using our ethnicity estimation method (see section 3) and thus 

help us redefine population boundaries. For example, we may merge two populations if performance in 

the cross-validation experiment is poor in each group but is found to be better in a merged group. 

After performing several rounds of reference panel refinement based on cross-validation experiments, we 

settled on dividing our latest reference panel into 60 global regions. These regions are described in 

further detail below. 

2.5 Updated Reference Panel 

The updated AncestryDNA ethnicity estimation reference panel contains ​40,017​ samples carefully 

selected as described to represent 60 global regions (Table 2.1), each with a unique genetic profile. As a 

comparison, our previous panel of 16,638 samples represented 43 distinct global regions. 

Region Number of samples 

Baltics 147 

Basque 31 

Benin & Togo 287 

Burusho 23 

Cameroon, Congo & Southern Bantu Peoples 535 

Central Asia–South 369 

China 915 

Cuba 3427 

Dai 70 

Eastern Bantu Peoples 91 

Eastern Europe & Russia 1777 

England, Wales & Northwestern Europe 1461 

Ethiopia & Eritrea 55 

European Jewish 450 



 
 
 
 
 
 

Finland 408 

France 998 

Germanic Europe 2126 

Ghana 109 

Greece & the Balkans 354 

Guam 57 

Indigenous Americas–Andean 62 

Indigenous Americas–Mexico 725 

Indigenous Americas–North 2290 

Indigenous Americas–Southeast 2966 

Indigenous Americas–Yucatan 92 

Indigenous Americas–Central 1008 

Indigenous Americas–Colombia & Venezuela 2615 

Indigenous Arctic 36 

Indigenous Haiti & Dominican Republic 2868 

Indigenous Puerto Rico 4803 

Iran / Persia 577 

Ireland & Scotland 560 

Italy 1057 

Japan 173 

Korea 197 

Mali 413 

Malta 106 

Melanesia 64 

Middle East 467 

Mongolia & Central Asia–North 58 

Nigeria 522 



 
 
 
 
 
 

Northern & Western India 413 

Northern Africa 123 

Northern Asia 43 

Norway 402 

Philippines 558 

Polynesia 188 

Portugal 627 

Samoa 73 

Sardinia 38 

Senegal 114 

Somalia 23 

Southeast Asia 191 

Southern & Eastern Africa Hunter-Gatherers 38 

Southern & Eastern India 405 

Spain 497 

Sweden 414 

Tonga 97 

Turkey and the Caucasus 229 

Vietnam 195 

Total 40,017 
 

Table 2.1: The Final AncestryDNA 2019 Ethnicity Reference Panel 

We discuss more detailed tests of the performance of the 2019 ethnicity panel in Section 4. For details of 

the method AncestryDNA uses for genetic ethnicity estimation, see Section 3. 



 
 
 
 
 
 

3.  AncestryDNA Ethnicity Estimation 

3.1 Introduction 

After establishing and validating the reference panel, the next step is to estimate a customer’s ethnicity by 
comparing over 300,000 single nucleotide polymorphisms (SNPs) from their DNA to those of the 
reference panel. We assume that an individual’s DNA is a mixture of DNA from the 60 populations 
represented in the reference panel. This is illustrated in Figure 3.1, where, because of recombination, a 
customer inherits long stretches of DNA from his or her four grandparents who, in this example, come 
from four “single source” reference populations.  

Because DNA is passed down from one generation to the next in long segments, it is likely that the DNA 
at two nearby loci in the genome were inherited from the same person and so the same population (for 
more details on DNA inheritance see our DNA Matching White Paper 
http://dna.ancestry.com/resource/whitePaper/AncestryDNA-Matching-White-Paper). This means we can 
get more accurate results by looking at multiple nearby SNPs together as a group, or haplotype, instead 
of looking at each SNP in isolation. Our updated method takes advantage of this to greatly improve our 
estimates.  

We estimate a customer's genetic ethnicity by assuming that each segment of their genome comes from 
one of the 60 populations in the reference panel. ​We divide the customer’s genome into 1,001 windows. 
We assume that each window is small enough that each of the two parental haplotypes present in the 
window came from exactly one population. We then combine information from all the windows to estimate 
what overall portion of the customer’s genome came from each of the populations in the reference panel 
using a hidden Markov model (HMM).  

As you can see in Figure 3.1, each window does not have to have a single ethnicity associated with it. 
Instead, it can have one from one parent and one from the other. For example, the first window has two 
different ethnicities represented by the colors green and red. Any ethnicity estimator that uses the 
technology AncestryDNA does to read DNA has to account for the possibility of two separate ethnicities in 
each window. In other words, it has to employ a model that looks at the DNA and can identify the DNA as 
a mix of red and green as opposed to just red or just green (or any of the other possible combinations).  



 
 
 
 
 
 

 

Figure 3.1:  Inheritance of DNA from different populations.  ​On the left, we present a three-generation genetic family tree.  For 

each individual, we show two vertical bars representing the two copies of a single chromosome present in each individual. These 

bars are colored by the reference population from which they inherited their DNA. Each of the four grandparents (solid bars, top row) 

has inherited 100% of their DNA from a single population that is different from the other three. The DNA is passed forward to the 

parents and finally to the customer, who, through the process of recombination and assortment, ends up inheriting a shuffled set of 

chromosomes from each parent.  The colors show that the customer’s DNA is a mixture of the DNA inherited from their four 

grandparents, with long stretches inherited from the same grandparent. On the right, we show that to obtain a customer’s ethnicity 

estimate, we divide the customer’s genome into small windows (represented by black horizontal lines). For each window we assign 

a single population to the DNA within that window inherited from each parent, one population for each parental haplotype. Each 

window gets a population assignment based on how well it matches genomes in the reference panel.  

3.2 Principles of a Hidden Markov Model 

When we analyze DNA data, we do not know the population it comes from ahead of time. Instead, we 

observe a pair of alleles (often called a genotype) at each position (or SNP) in the DNA. One allele was 

inherited from Mom and the other from Dad. 



 
 
 
 
 
 

Because the probability of a specific pair of alleles appearing at a certain position in the DNA varies for 

each of our 60 regions, we can use that information to tell us which region a stretch of DNA most likely 

came from. For example, if AA at a particular position is more common in people from Spain, someone 

with AA at that location might have a higher chance of having Spanish ancestry. 

It is important to keep in mind that an AA at this particular position just makes it ​more likely​ the DNA 

comes from Spain. Plenty of people from Portugal, France, or even Korea might have AA at this position 

as well. The ethnicity estimate uses the probability at all positions within a window to determine where the 

DNA most likely came from. We infer the genetic ethnicity of each position using a statistical tool called a 

hidden Markov model (HMM) [Rabiner, 1989]. 

A customer’s genome is a sequence of nucleotides—As, Ts, Cs, and Gs—strung together to make a 

chain. The precise nucleotide at any position depends on what population that segment of DNA has come 

from, but that information is not known. In determining ethnicity, an HMM statistically determines the most 

likely ancestral reference population from which a segment of DNA originates, its most likely “hidden 

state,” based on a sequence of observations (in this case, the genotypes, or particular combination of 

SNPs).  

We divide the customer’s genome into 1,001 stretches of DNA called windows and determine the hidden 

state for each of them. Each window has two stretches of DNA, one from Mom and one from Dad, and 

they can either both be from the same ethnicity or from different ones. So the hidden state in this case is 

the ethnicity of each segment of DNA in the window. 

HMMs have two components, called emission and transition probabilities. Emission probabilities tell us 

how likely it is that a stretch of DNA came from each of the 60 populations based on the observed 

sequence​. The transition probability indicates how likely it is that there will be a change in the population 

identification from one window to the next. In other words, if in the DNA in the current window is from only 

Sweden, how likely is the DNA in the next window to also be from only Sweden? 

This is a sensible model for human DNA because human genomes are organized linearly along 

chromosomes. Additionally, the nature of inheritance means that whole segments of the genome and, 

therefore, many consecutive nucleotides that Ancestry looks at along a chromosome, will have the same 

DNA ancestry.  



 
 
 
 
 
 

3.3 Inferring Ethnicity Estimates from a Genome-Wide HMM 

At AncestryDNA, we use microarrays to obtain DNA data from customer samples. We look at over 

700,000 individual locations on the DNA (SNPs) and determine the nucleotides at each position. For 

example, we may see an A and a T at position 1, a G and a G at position 2, and so on. We use around 

300,000 of these SNPs in the ethnicity estimate. 

In working with data from arrays, it is important to remember that people have two copies of each of the 

22 chromosomes that AncestryDNA reports data back on. One set of chromosomes comes from Mom 

and the other from Dad. This means there are two results for each position AncestryDNA analyzes, and 

those results must be interpreted to assign which DNA came from which set of chromosomes (this 

process is called phasing). AncestryDNA must consider what possible combinations of ethnicities might 

look like. For example, if one customer has a section of their DNA that came from Swedish ancestors 

from Mom’s side of the family and Japanese ancestors on Dad’s, the algorithm must be able to 

distinguish this from a second customer with Swedish and Nigerian ancestors. 

We create a genome-wide HMM (illustrated in Figure ​3.2​) where each possible ethnicity combination (or 

hidden state) is represented by a pair of populations in a window of the genome, and changes between 

windows that are next to each other are unlikely to change the state. In other words, if in the preceding 

window the DNA from Mom and the DNA from Dad both came from Nigeria, then the next window is more 

likely to be the same.  

The state in a given window is a pair of populations, where each ethnicity in the pair can be different (e.g., 

red and green in window 1 of the third row of Figure 3.2​) or the same (e.g., green and green in window 1 

of the top row​ of Figure 3.2​). Each population pair assignment has a probability of appearing (or the 

“observed genotypes”) in the window (emission probability).  

We also account for the probability of changing population assignments between adjacent windows 

(transition probability). Essentially this means that if you are, for example, Sweden/Sweden in one 

window, there will need to be very strong evidence from the observed DNA data that the neighboring 

window has a different population assignment. By applying these probabilities to the whole genome, we 

can obtain a sequence of population assignments along a customer's genome. 



 
 
 
 
 
 

 

Figure 3.2: An illustration of the genome-wide HMM for three populations. The genome is divided into ​W​ windows, and we 

model transitions from a given window ​w​, to the adjacent window ​w+1.​ Here, the possible (hidden) states for a window are 

represented by colored squares, with different colors representing different population assignments. Boxes with two 

different colors represent mixed ancestry in the window. Arrows between boxes represent transitions, and each box/state 

emits the customer’s observed genotype with a probability that was pre-computed in the previous step. Transitions that do 

not result in a change in state/colors between two windows are more likely than those that do. Only transitions that result 

in at most one color/population change are allowed. 

3.4 Transition Probabilities 

Transition probabilities are really just the odds that an ethnicity will change from one window to the next. 

Ancestry only considers a transition to the window that is immediately adjacent, so the only things that 

determine the transition probability are the state at the current window and the state it transits to at the 

next window. This “memoryless” property is a key feature of an HMM.  

We do not allow transitions between states where both populations are different because from a biological 

perspective, it is very unlikely that there would be a change in the same window in both the set of DNA 

from Mom and the set of DNA from Dad. This greatly reduces the number of possible transitions and the 

complexity of the HMM.  

The exception to this rule is when there is a transition from the end of one chromosome to the beginning 

of the next. In these cases, changes are much more likely than they are within the same chromosome 

because the DNA in different chromosomes are not connected. This is accomplished by forcing a silent 

state between chromosomes, which makes sense because there is no connection between two 

chromosomes. The transition probability from a silent state to a given pair of population assignments is 

simply given by the genome-wide probability of any position of the genome having that population 



 
 
 
 
 
 
assignment. In other words, there is no information from a previous window to affect the interpretation of a 

window that immediately follows a silent state. We estimate this value as part of the HMM. Initially, this 

value is set to be the same for every population pair, and is learned during the iterations of the HMM as 

each sample is processed. 

3.5 Emission Probabilities 

Determining how likely the DNA in a window came from a population (the emission probability) is a 

complicated process and is described in more detail in the appendix.  

Briefly, our approach includes the following steps:  

I. Define the windows.​ DNA is inherited in long stretches of contiguous DNA within chromosomes 

referred to as haplotypes. Working with these blocks of DNA can be more informative than 

working with individual positions within the DNA. We do not know the exact haplotype 

boundaries, which differ between people, but we can achieve a good approximation by dividing 

the genome into 1,001 small windows. Each window covers one section of a single chromosome 

and is small enough (​e.g., ​3-10 centimorgans) that both the maternal and paternal haplotype, the 

DNA from Mom and the DNA from Dad, in a given window are likely to each come from a single, 

though not necessarily the same, population.  

II. Create the haplotype models.​ Next we need to compare a customer’s haplotype within a 

window to those in our reference panel to assess how likely it is to have come from each 

population. For example, how likely are both segments of DNA in a haplotype to come from 

Sweden vs. one from Sweden and one from France, and so on through all of the possibilities. To 

do this we first need to create a haplotype model. We do this by constructing a ​BEAGLE 

[Browning, 2007] haplotype cluster model for each window using hundreds of thousands of 

haplotypes (see Matching white paper for more on this). Since we start with unphased customer 

genotype data, data in which maternal and paternal haplotypes are not distinguished, the model 

accounts for all possible haplotypes given a set of genotypes, and each state in a haplotype 

cluster model represents a cluster of similar haplotypes.  

III. Annotate the reference panel.​ We want to identify the haplotype clusters in our model that are 

associated with each population in the reference panel. Because we are confident in the 

geographic origin of members of the reference panel, we are able to calculate the probability that 

a haplotype from a given population is represented by a particular haplotype cluster. These 



 
 
 
 
 
 

values are used to compute the emission probabilities in the genome-wide HMM that assigns 

ethnicity. 

IV. Compare the test sample to the reference panel to assign population labels using an HMM. 
To do this, we compute the likelihood that the pair of haplotypes present in each window of a test 

sample come from the populations in the reference panel. For each window, both haplotypes may 

come from the same population or from different populations, and the resulting emission 

probabilities are calculated for all possible combinations.  

HMMs are used in a number of existing approaches for estimating ancestral proportions [Maples 2013]. 

The key part of our method is step III, where we use rich haplotype models in each window, annotated 

with population labels from the haplotypes in our reference panel, to assign a likelihood over all 

population labels to the haplotypes in our test sample. It is worth noting that our method lends itself to 

high-throughput ethnicity estimation, as steps (I) through (III) above–learning the haplotype models from a 

large training set and then annotating them with the reference panel populations–need only be carried out 

once.  

3.6 HMM Model 

We use HMMs because they can effectively consider all possible ethnicity assignments to all windows in 

the genome and do so efficiently.​ Ancestry runs our HMM on a customer’s DNA to find the most likely 

sequence of ethnicities along the DNA. In more technical terms, the algorithm takes the “Viterbi” path, the 

sequence of hidden states that returns the highest probability. The final ethnicity proportions the 

customers receive are calculated by counting the proportion of the Viterbi path (weighted by 

recombination distance) that are assigned to a particular population in the reference panel. For example, 

a customer with the sequence Sweden/Sweden, Sweden/Sweden, Sweden/Sweden, France/Sweden, 

France/Sweden (and an incredibly small genome!) would be 20% France and 80% Sweden, given the five 

windows have identical size. 

Because these proportions are estimates, we need a way to determine the confidence surrounding these 

values. To do this, we randomly sample 1,000 non-Viterbi paths, or paths that might not be the most likely 

(but are still likely). In each of the 1,000 runs, a given window is assigned a population pair with a 

probability that depends on the assignment, within the same run, of the previous window and the 

predetermined transition and emission probabilities. These 1,000 values are used to provide a confidence 

range on the reported Viterbi estimate. 



 
 
 
 
 
 

 

Figure 4.6: Illustration of the Viterbi path, represented by arrows, through the HMM that determines an ethnicity estimate. 

` 

Figure 4.7: Illustration of our stochastic path-sampling process. 



 
 
 
 
 
 

4. Assessing Ethnicity Estimation Performance 

After developing and optimizing both the estimation process and the reference panel, the final 
step is to determine how well they perform together at assigning ethnicity.  Basically, we see 
how close our process gets to the right answer through rigorous testing using a wide variety of 
test cases with known ethnicity. 

4.1 Cross-Validation 

We evaluate the performance of the ethnicity estimation process by running it on two different 
test cases where we know what the correct answer should be: single-origin individuals 
(including synthetic single-origin individuals) from the reference panel and synthetic individuals 
with mixed ethnicities. We gauge its effectiveness by seeing how close we get to the true 
ethnicity. 
 
Reference panel groups: Our reference panel has two types of reference groups. In the first, 
people have a long family history in a single region with no influx of other individuals to that 
region. They represent a typical person from that region and by definition, have 100% of the 
region they represent in their DNA. The second group is a little more complex. This group 
represents indigenous peoples who also have ancestors from a different region. An example 
would be people from Mexico who may have Native American, European, and African 
ancestors. We are able to include only the parts of their DNA that are Native American (or 
indigenous) to the reference panel. 
 
Single-origin individuals:​ We use two different sets of single origin individuals in our cross 
validation studies. The first are those for whom we utilize their entire genome as a reference for 
a particular region. By definition these individuals in our reference panel each have 100% of a 
single ethnicity.  
 
This approach does not work for the reference panel regions where we used the indigenous 
DNA of admixed individuals. For these reference panel regions, primarily from  the Americas 
and Oceania, we created synthetic single origin individuals by piecing together genotype 
sequences that represented indigenous ancestry from multiple individuals. These synthetic 
single origin individuals are then used to evaluate the accuracy of our method.  
 
We evaluate our process by running 20-fold cross-validation experiments using these 
single-origin individuals from our reference panel. For example, if we had 100 people in each 
reference panel group, we would take 5 from each of the 60 groups and run the algorithm on 
these 300 samples using the remaining 5,700 individuals as the reference group. Then a 



 
 
 
 
 
 
different 5 would be taken from each group and the process repeated 20 times so that every 
individual in the reference panel is tested.  
 
 
Overall we observe that the updated process correctly assigns an average of 80.5% of the 
genetic ethnicity to the correct region for single-origin individuals from our reference panel 
(Figure 2.3). We predicted nearly 100% of the genetic ethnicity from the correct region for the 
following groups: 
 

● European Jewish 
● Indigenous Americas--North 
● Indigenous Puerto Rico 
● Indigenous Americas--Mexico 
● Indigenous–Arctic 
● Polynesia 
● Japan 
● Indigenous Americas–Colombia & Venezuela 
● Eastern & Southern India 
● Cameroon, Congo & Southern Bantu Peoples 
● Finland 
● Mali 
● Ireland & Scotland 
● Melanesia 
● Philippines 
● Middle East 
● Indigenous Americas--Southeast 
● Africa South-Central Hunter-Gatherers 

 
For some regions, such as Indigenous Cuba, Mongolia, France, and Spain, the numbers are not 
as high, with average assignment of 30%, 51%, 53%, and 55% to the correct region, 
respectively. However, even if the prediction accuracies fall short of 100% for some regions, the 
remaining ethnicity is still assigned to nearby regions. For example,individuals from Mongolia 
might get some assignments to Northern Asia; individuals from Spain might get some level of 
assignment to Portugal (see Figure 4.2).  
 
 
 



 
 
 
 
 
 

 

Figure 4.2: Average estimated ethnicities for single-origin individuals from each population. In this graph, each row 
represents single-origin individuals from the population listed. Each column represents each of the possible 60 ethnicities 
that the single-origin individual might be assigned to. The graph is set up such that the matching individual and his or her 
ethnicity are aligned along the diagonal line. If the algorithm worked perfectly, there would be only white boxes along the 
diagonal—white represents 100% origin from that population. Any boxes that are not on the diagonal represent 
misassigned populations. This graph also shows that certain ethnicities can be confounded by other ethnicities. For 
example, individuals with 100% Spanish ethnicity can be assigned to France and Portugal.  
 
Synthetic individuals with mixed ethnicities​: We also evaluated the accuracy of ethnicity 
estimates for “synthetic” individuals of mixed ethnicity origins. These test cases are simulations 
we construct with known mixtures of ethnicities. Each synthetically admixed individual can have 
as few as 2 or as many as 20 ethnicity regions, with various proportions. Since the true ethnicity 



 
 
 
 
 
 
proportions are known, we can calculate precision and recall for each ethnicity region. Precision 
and recall are two important factors in evaluating our estimation process.  
 
Precision can be thought of as how much of the reported ethnicity is true. For example, if our 
process predicts an individual has 40% Northern Africa, but only 30% really is, then the process 
has a precision of 0.75 for Northern Africa ethnicity. Mathematically, precision is expressed as 
the amount of correctly identified ethnicity divided by the estimated value for that region.  
 
Recall can be thought of as how much of the true ethnicity is called by the process. Keeping 
with our Northern Africa ethnicity, imagine that an individual has 50% Northern Africa ancestry, 
but the algorithm predicts 40%. In this case, the process has a recall of 0.8 for Northern Africa 
ethnicity.  

Table 4.1 : Precision/Recall for each region calculated from ethnicity estimates of synthetic individuals 

with mixed ethnicities.  

Region Precision Recall 

Baltics 0.43 0.81 

Basque 0.48 0.65 

Benin & Togo 0.84 0.88 

Burusho 0.87 0.52 

Cameroon, Congo & Southern Bantu Peoples 0.9 0.98 

Central Asia-South 0.89 0.7 

China 0.95 0.84 

Dai 0.46 0.84 

Eastern Bantu Peoples 0.96 0.7 

Eastern Europe & Russia 0.87 0.81 

England, Wales & Northwestern Europe 0.58 0.81 

Ethiopia & Eritrea 0.91 0.93 

European Jewish 0.93 0.98 



 
 
 
 
 
 

Finland 0.87 0.97 

France 0.65 0.52 

Germanic Europe 0.79 0.64 

Ghana 0.88 0.54 

Greece & the Balkans 0.58 0.65 

Guam 0.69 0.63 

Indigenous Americas-Andean 0.93 0.9 

Indigenous Americas-Mexico 0.92 0.97 

Indigenous Americas-North 0.98 0.99 

Indigenous Americas-Southeast 0.95 0.92 

Indigenous Americas-Yucatan 0.72 0.86 

Indigenous Americas–Central 0.94 0.91 

Indigenous Americas–Colombia & Venezuela 0.94 0.96 

Indigenous Arctic 0.98 0.99 

Indigenous Cuba 0.67 0.16 

Indigenous Haiti & Dominican Republic 0.88 0.66 

Indigenous Puerto Rico 0.98 0.99 

Iran / Persia 0.87 0.68 

Ireland & Scotland 0.59 0.97 

Italy 0.77 0.68 

Japan 0.88 0.96 

Korea & Northern China 0.62 0.92 

Mali 0.92 0.97 

Malta 0.91 0.89 



 
 
 
 
 
 

Melanesia 0.97 0.98 

Middle East 0.81 0.85 

Mongolia & Central Asia-North 0.91 0.53 

Nigeria 0.91 0.92 

Northern & Western India 0.73 0.71 

Northern Africa 0.93 0.79 

Northern Asia 0.74 0.72 

Norway 0.63 0.74 

Philippines 0.97 0.95 

Polynesia 0.98 0.99 

Portugal 0.86 0.56 

Samoa 0.82 0.87 

Sardinia 0.58 0.82 

Senegal 0.92 0.93 

Somalia 0.86 0.87 

Southeast Asia 0.97 0.59 

Southern & Eastern Africa Hunter-Gatherers 0.91 0.97 

Southern & Eastern India 0.77 0.89 

Spain 0.75 0.42 

Sweden 0.57 0.66 

Tonga 0.88 0.86 

Turkey and the Caucasus 0.46 0.56 

Vietnam 0.68 0.86 

 



 
 
 
 
 
 
We found that most ethnicity regions have precision and recall that are both higher than 60%, 
especially several regions that perform extremely well: 
 

● Indigenous-Arctic 
● Polynesia 
● Indigenous-Puerto Rico 
● Indigenous Americas-North 
● Philippines 
● Melanesia 
● Indigenous Americas-Southeast  
● Indigenous Americas-Andean 
● Indigenous Americas–Central 
● Indigenous Americas–Colombia & Venezuela  
● Indigenous Americas-Mexico 
● Southern & Eastern Africa Hunter-Gatherers 
● Nigeria 
● Cameroon, Congo & Southern Bantu Peoples 

 
Some regions, such as Indigenous Cuba and Spain have relatively lower recall, 16% and 42% 
respectively, while some regions, such as Baltics, Turkey & the Caucasus, and Dai have 
relatively lower precision, 43%, 46%, and 46% respectively.  

4.2 Region Assessment 

Analyzing samples from individuals whose known ancestors are from only one of our ethnicity regions 

also allows us to measure how much overlap exists between regions and help our customers interpret 

their results. To find these individuals, we use customer-created family trees and look for customers who 

have consented to research who have all of their ancestors from the same country. Ideally, we’d use 

people with all of their grandparents from the same country, but due to low numbers for some countries 

we sometimes use parents.  

Customers who are not in the reference panel and have deep trees tracing back to a single country are 

expected to have high assignments to the ethnicity associated with that country, and this is what we 

generally find. For example, Figure 4.3A shows the average ethnicity assignments for 194 customers with 

all four grandparents born in Germany. As you can see, while most of their ethnicity is from Germany, 

other regions do appear in small but significant amounts. These analyses help ensure that ethnicity 

estimates for people from a region agree with expectations.  



 
 
 
 
 
 

However, not everyone receives an estimate that follows the average for each country, and it’s often 

useful to look at individual results to understand why. Figure 4.3B shows the average ethnicity estimates 

for people with all four grandparents from Japan. 

 

 



 
 
 
 
 
 

 

Figure 4.3 Average ethnicity  assignments based on grandparental birth location. ​ Average ethnicity assignments for 

customers with all four grandparents born in the same country. (A) Germany, (B) Japan  

We also use the maps like the one shown in Figure 4.4 to ensure that ethnicity estimates make sense 

geographically. The geographic distribution of ethnicity estimates within a country can often help make 

sense of otherwise surprising results. For example, as you can see in Figure 4.4, there is a high level of 

Ireland and Scotland ancestry in the Brittany region of France. This makes sense because the Ireland and 

Scotland assignment is the result of Celtic peoples who lived both there and in Brittany. In fact, the Celtic 



 
 
 
 
 
 
language Breton is traditionally spoken there. Higher Ireland and Scotland estimates in Wales also likely 

reflect the history of Celtic migration in that region. 

 

 

Figure 4.4 ​Map of average Ireland and Scotland estimates.​ High estimates outside of Ireland in Scotland, Wales, and Brittany (as 

shown in light blue and green) likely reflect historic migrations of Celtic people.  

These analyses help us understand the genetic diversity of the regions and allow us to better 

communicate these results to our customers (e.g., even if all of a customer’s ancestors are German, the 

customer can expect to have some amount of genetic ethnicity from adjacent regions). These analyses 

also aid us in prioritizing future developments for further ethnicity estimation updates. 



 
 
 
 
 
 

 

4.3 Regional Polygon Construction 

Because we use 60 populations in our reference panel, we divide the globe into 60 overlapping 

geographic regions/groups. Each region represents a population with a unique genetic profile. Where 

possible, we use the known geographic locations of our samples to guide where the regional boundaries 

should be. Figure 4.5 shows an example of the information used to define regional polygons. 

 

 



 
 
 
 
 
 

 



 
 
 
 
 
 

 

Figure 4.5: Using geographical sample locations to draw regional polygons.​ Panel A shows the distribution of the England, 

Wales & Northwestern Europe ethnicity predicted for a set of samples with geographic information. Samples are assigned to grids of 

0.5 degrees longitude by 0.5 degrees latitude based on the average birth location of their ancestors’ grandparents. The color of each 

grid squarepoint on the map represents the average England, Wales and Northwestern Europe ethnicity of samples from each grid. 

Panel B shows the maps after filling in missing regions and smoothing the results. The information is processed with kernel 

smoothing to create the outlines representing the ancestry regions shown to customers, as shown in panel C.  

In Figure 4.5A, we show the amount of ethnicity assigned to the England, Wales and Northwestern 

Europe region for a subset of reference samples with known geographic locations. Figure 4.5B shows the 

results after imputing values to fill in gaps and applying smoothing methods to make the plot less spotty. It 

is clear from the plot that there is a gradient of ethnicity in this region that is centered in England that 

quickly tapers off in surrounding regions. For example, the next level of concentration, represented by 

green in the image, is in areas surrounding England, such as Wales, France, and Belgium. The ethnicity 

gradient continues to diminish as represented in purple with the borders reaching as far away as Italy, 

Switzerland, Sweden, and Ireland. Where possible, this information is applied directly to the drawing of 



 
 
 
 
 
 
regional boundaries (Figure 4.5C) that appear on the maps presented as part of the AncestryDNA product 

experience. 

These polygons appear as nested regions with increasing depth of shading. The reddish brown regions 

represent the regions with the highest average assignments and are the most likely physical locations of a 

customer’s ancestors. The blue/purple regions have lower average levels and represent other possible 

locations of origin that are less likely. Each set of polygons is accompanied by a detailed account of the 

history of the region. 

The map below shows polygons for all 60 ethnic groups based on the second tier of the polygons, 

constructed as described above. 

 

4.4 Reporting uncertainty of estimated values  

Ethnicity estimates are not an exact science. The percentage AncestryDNA reports to a customer is the 

most likely percentage within a range of percentages. In this section, we discuss how we calculate this 



 
 
 
 
 
 
range. It is important to keep in mind that here at AncestryDNA we continue to build upon our previous 

work to offer ever more accurate results to our customers. 

So, for example, we might report someone as 40% England, Wales and Northwestern Europe with a 

confidence range of 30-60%. This means that they are most likely 40% England, Wales and Northwestern 

Europe but they could be anywhere between 30% and 60% England, Wales and Northwestern Europe.  

As discussed in section 3, we run a genome-wide Viterbi estimate on a customer’s DNA sample and 

report that back as the customer’s most likely ethnicity estimate. From this we are able to get transition 

probabilities that we can then use to generate new ethnicity estimates that while likely, are not the most 

likely. The range is based on 1,000 of these sampled paths.  For example, if a window has an 80% 

chance of being from England and Wales, then it has a 20% chance of being from some other region. The 

confidence interval captures these sorts of lower chances across a customer’s DNA.  

We devised a way, using the 1,000 sampled estimates, to estimate the confidence interval surrounding 

the Viterbi estimate reported to the customer.  Our objective when defining this approach was to 

maximize the probability that the reported range contains the true ancestry proportion (​recall​), while also 

maximizing ​precision​ by maintaining a fairly narrow range.  

We take the mean and standard deviation of the 1,000 sampled estimates and use these to calculate a 

confidence range surrounding the Viterbi estimate. When calculating this range, we take into account the 

value of the Viterbi estimate and the population for which we are calculating the range.  

We can test our process for calculating the range using the same synthetic admixed individuals used for 

the cross-validation studies to determine how often it correctly gets the known ethnicity percentage within 

the range. In other words, how often does the range overlap the known ethnicity. We find that the 

algorithm performs very well for some populations and less well for others. Since we know the true 

ethnicity, we can incorporate correction factors specific for each population to maximize the probability 

that the true ethnicity falls within the range.  

5. Future Ethnicity Estimation Refinement 

While AncestryDNA is extremely proud of the updates in this release of its genetic ethnicity estimation 

process, we will continue to improve the product over time. The availability of new data, the development 



 
 
 
 
 
 
of new methodologies, and the discovery of new information relating to patterns of human genetic 

variation will all necessitate future improvements to the product. 

 

Figure 5.1:​ Ethnicity Improvement Cycle. 

Each of the steps above represents a critical part of our ethnicity estimation procedure and development. 

Currently, we are working to further expand our global reference panel for future ethnicity updates. We 

have already begun genotyping and analyzing samples for a future update which will provide finer-grained 

estimates of ethnicity. We have also begun a new diversity initiative to gather DNA samples from 

underrepresented regions around the world in order to expand the number of regions we can report back 

to customers.  

Simultaneously, we are also working to improve our algorithms for ethnicity estimation. Future ethnicity 

updates will include an improvement to our statistical methodology that will more fully leverage 

information in genetic data to reveal even more information about population history. Along the way, we 

always perform thorough testing, involving analyses like those described above. These tests inform the 

focus of our improvements, and help to refine our improvements as necessary. 

Each new release of genetic ethnicity estimation will represent a step forward in our ability to give our 

customers a complete description of their genetic ancestry and inform them about their ancient genetic 



 
 
 
 
 
 
origins. We hope that, like the entire team at AncestryDNA, our customers will look forward to these future 

developments. 
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