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Summary:

The AncestryDNA® science team has developed a fast, sophisticated, and accurate method for
estimating the historical origins of customers’ DNA going back several hundred to over 1,000
years. Our newest approach improves upon our previous version in the number of possible
regions that a customer might be assigned (from 61 to 70) as well as an increase in accuracy to
both regions assigned and the percentage assigned to each region. We have added nine new
regions as well as made improvements to the composition of our reference panel and inference
algorithm, resulting in more accurate estimates overall. Given the cutting-edge nature of this
type of science, we will continue to refine our approach and improve estimates.

The basic idea behind ethnicity estimation involves comparing a customer’s DNA to the DNA of
people with long family histories in a particular region or group, what we call the reference
panel, and looking for segments of DNA that are most similar. If, for example, a section of a
customer’s DNA looks most similar to DNA in the reference panel from people from Sweden,
that section of the customer’s DNA is said to be from Sweden, and so on. The end result is a
portrait of a customer’s DNA made up of percentages of the 70 ethnicities contained in the
reference panel.

That is a short version of how AncestryDNA determines a customer’s ethnicity estimate. The
rest of the white paper will delve more deeply into

1. How the reference panel samples are chosen, their makeup, and how the panel is validated
2. How the algorithm that determines a customer’s genetic ethnicity works and how it is
validated



1. Introduction

Genetic ethnicity estimates that determine which populations in a reference panel are most
similar to someone’s DNA are a major component of the DNA Story provided by AncestryDNA.
As its name suggests, DNA Story provides customers with insights into their past by analyzing
their DNA.

AncestryDNA has employed a team of highly trained scientists with backgrounds in population
genetics, statistics, machine learning, and computational biology to develop a fast,
sophisticated, and accurate method for estimating genetic ethnicity for our customers. In this
document, we describe the approach we use to estimate customers’ genetic ethnicity. We will
discuss the development of the reference panel we compare each customer sample against, the
inference method we apply to estimate genetic ethnicity, and finally the extensive testing

regimen we employ to assess the quality of our estimates.

Glossary

Admixed — Having ancestry from multiple populations.

Allele — A variant in the DNA sequence. For example, a SNP (defined below) could have two alleles: A
or C.

Centimorgan (cM) — A unit of genetic length in the genome. Two genomic positions that are a
centimorgan apart have a 1% chance during each meiosis (the cell division that creates egg cells or
sperm) of experiencing a recombination event between them.

Chromosome — A large, inherited piece of DNA. Humans typically have 23 pairs of chromosomes with
one copy of each pair inherited from each parent.

Genome — All of someone’s genetic information; the DNA on all chromosomes

Genotype — A general term for observed genetic variation either for a single site or the whole genome.
Haplotype — A stretch of DNA along a chromosome

Hidden Markov model (HMM) — A statistical model for determining a series of hidden states based on a
set of observations

Locus — A location in the genome. It could be a single site or a larger stretch of DNA.

Microarray — a DNA microarray is a way to analyze hundreds of thousands of DNA markers all at once.
Nucleotide — DNA is composed of strings of molecules called nucleotides (also called bases). There are
four different types and they are usually represented by their initials: A, C, G, T.

Population — A group of people



Phasing — The assignment of DNA to contiguous segments corresponding to the DNA inherited from
Mom or Dad. This is done with an algorithm.

Recombination — Before chromosomes are passed down from parent to child, each pair of
chromosomes usually exchange long segments between one another and then are reattached in a
process called recombination.

Single nucleotide polymorphism (SNP) — A single position (nucleotide) in the genome where different
variants (alleles) are seen in different people.

2. Reference Panel

2.1 Calculating an Ethnicity Estimate

Two chromosomes from the same geographic region or the same population will share more DNA with
one another than will two chromosomes from different regions or groups. So two pieces of DNA with a
historical connection to Sweden will have more DNA in common than will a piece of DNA from Korea and
a piece of DNA from Sweden. This is the basic premise behind the ethnicity estimate AncestryDNA

provides to its members.

To create the ethnicity estimate, we compare a customer’s DNA to a panel of DNA from people with
known origins (referred to as the reference panel) and look to see which parts of the customer's DNA are
similar to those from people represented in groups in the reference panel. If, for example, a section of a
customer’s DNA is most similar to the reference panel samples from Senegal, then we identify that

section of the customer’s DNA as coming from Senegal.

The accuracy of our ethnicity estimate depends on the quality of our reference panel. Because of this,
AncestryDNA has invested a significant amount of effort in developing the best possible set of reference

samples.
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Figure 2.1: Reference Panel Refinement Cycle. Schematic of the ethnicity estimation reference panel refinement cycle. In step 1
we select candidate reference samples from published data, the AncestryDNA customer list, and the AncestryDNA proprietary
reference collection. For AncestryDNA samples we rely on pedigree data to select those with deep ancestry from a single
population. In step 2 we filter out pieces of DNA between closely related samples from the candidate list. In step 3 we use principal
component analysis (PCA) to remove samples that show a disagreement in pedigree and genetic origin. We also use PCA to guide
the identification of population groups. In step 4 the panel is performance tested using numerous metrics and compared to the
previous release. The final result is a high-quality, well-tested reference panel. The entire procedure is cyclic, and AncestryDNA will
continue to make improvements to the panel with the goal of providing the most accurate ethnicity estimation possible with the data

available.

The rest of section 2 describes the steps taken to develop our current reference panel, including sample
selection, quality control, and testing. The ethnicity update that we describe here is not only an update of

the reference panel from our 2019 version but also increases the number of global regions from 61 to 70.

2.2 Who should be included in the reference panel?

Identifying the best candidates for the reference panel is key to providing the most accurate ethnicity
estimate possible from a customer’'s DNA sample. Under perfect circumstances, we would construct our
reference panel using DNA samples from people who lived hundreds of years ago. Unfortunately, it is not
yet possible to reliably sample historical populations in this way. Instead, we must rely on DNA samples
collected from people alive today and focus on those who can trace their ancestry to a single geographic

location or population group.



When asked to trace familial origins, most people can only reliably go back one to five generations,
making it difficult to find individuals with knowledge about more distant ancestry. This is because as we
go back in time, historical records become sparse, and the number of ancestors we have to follow

doubles with each generation.

Fortunately, knowing where someone’s recent ancestors were born is often a sufficient proxy for much
deeper ancestry. In the recent past, it was much more difficult and thus less common for people to
migrate large distances. Because of this, the birthplace of a person’s recent ancestors often represents

the location of that person’s deeper ancestral DNA.

AncestryDNA Reference Panel Candidates

In developing the most recent AncestryDNA ethnicity reference panel, we began with a candidate set of
close to 97,000 samples. First, we examined over 1,000 samples from 52 worldwide populations from a
public project called the Human Genome Diversity Project (HGDP) (Cann et al. 2002; Cavalli-Sforza

2005), over 1,800 samples from 20 populations from the 1000 Genomes Project (McVean et al., 2012),

and over 900 samples from 91 populations from the Human Origins dataset (Lazaridis et al. Nature 2014).

Second, we examined samples from a proprietary AncestryDNA reference collection as well as
AncestryDNA samples from customers who had previously consented to research. Most of the candidates
were selected from the last two groups only after their family trees confirmed that they had a long family
history in a particular region or within a particular group. A small number of candidates were selected
without a deep family tree, but these passed the rigorous vetting process outlined below. Although it was
not possible to confirm family trees for HGDP, Human Origins, and 1000 Genomes Project samples,
these datasets were explicitly designed to sample a large set of distinct population groups representing a

global picture of human genetic variation.

Reference Panel Candidates from Admixed Populations

In some parts of the world many indigenous people also have ancestry from multiple continents. For
example, people of Amerindian descent in North and South America may have some ancestry from
Europe and Africa. When creating reference panel regions reflecting geographic regions for the Americas
and Oceania, we wanted to use only the parts of the genome with ancestry from the indigenous
populations. We did this by looking at our previous ethnicity assignments and choosing only the segments

of DNA (or windows) where both chromosomes had assignment to an ethnicity region corresponding to


https://reich.hms.harvard.edu/sites/reich.hms.harvard.edu/files/inline-files/2014_Nature_Lazaridis_EuropeThreeAncestries.pdf

the indigenous population. So, whereas most of our regions use DNA from the entire genome of each
candidate, for regions from admixed populations we only use a fraction of each person’s genomes. The
ethnicity regions where we employ this approach are Indigenous Americas-North, Indigenous
Americas-Mexico, Indigenous Americas—Yucatan, Indigenous Puerto Rico, Indigenous Haiti & Dominican
Republic, Indigenous Cuba, Indigenous Americas—Central, Indigenous Americas—Andes, Indigenous
Americas—Colombia & Venezuela, Indigenous Eastern South America, Samoa, Tonga, Eastern Polynesia

& New Zealand Maori, Aboriginal and Torres Strait Islander, and Guam.

2.3 Reference Panel Quality Control

For each sample, we analyzed a set of approximately 300,000 SNPs that are shared between the Illlumina
OmniExpress platform and the lllumina HumanHap 650Y platform, which was used to genotype HGDP
samples. After samples with large amounts of missing data were removed, we filtered out those which
were likely to degrade the performance of the reference panel. Samples were typically removed because
they were closely related to another reference sample or the underlying genetic information about a

sample’s origins disagreed with the family tree data.

When we perform genetic ethnicity estimation, we are interested in computing the probability that a
particular segment of DNA, an observed haplotype, came from each possible source population in the
reference panel (see Section 4 below). In other words, what are the odds that this particular stretch of

DNA came from Sweden? Or France? Or any of the other regions we test?

To do this, we need to estimate the frequency of this haplotype in each population, and this requires that
people in the reference panel not be closely related. This is because DNA segments shared as a result of
recent ancestry, as identified through identity by descent (IBD), do not represent independent haplotypes
in a population, so retaining them can distort the estimates of population haplotype frequencies. This is
why we remove such segments for candidates that share more than a certain amount of IBD DNA (20
cM). Details about our approach for detecting shared segments of IBD DNA can be found in our

AncestryDNA Matching white paper .

Next, we remove samples from the reference panel candidate set when the genetic data about ethnicity
disagrees with what that person has reported about their ethnicity—when underlying genetic information
disagrees with the pedigree data. We identify these outliers using two approaches: (1) we identify clear

outliers using our previous ethnicity estimate version, and (2) we use principal component analysis (PCA).



PCA is frequently used for exploratory data analysis in population genetics research (Jackson 2003).
When applied correctly to genotype data, PCA can capture the genetic variation separating distinct

populations (Patterson 2006).

We apply PCA to the samples that have made it through the previous screening processes and plot the
early stages of the analysis, the “first four principal components,” as a series of scatter plots. We color
each sample by their country of origin, determined by pedigree for Ancestry samples and by sample label

for public samples (see Figure 3.3).
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Figure 2.2: PCA Analysis on European Panel Candidates. Scatter plot of the first two components from a principal component
analysis (PCA) of candidate European samples for the AncestryDNA reference panel. Visual inspection of PCA is useful for
numerous aspects of data QC. First, it can be used to identify individual outliers, such as the ltalian samples (green squares) that

appear near the Portugal and Spain (yellow and blue triangles, respectively) cluster. It can also be useful for identifying poor sample



grouping. Finally, it can reveal regions where there is limited genetic separation and clusters overlap (e.g. the United Kingdom and

Ireland) and regions that can be further subdivided.

Each population tends to form a cluster of points (each point is a sample) in the scatter plot. This is
because points that are more genetically similar are closer in PCA space. Helpfully, these clusters of
points tend to match geography as well because most people are genetically more similar to others from
nearby. Furthermore, these plots quickly reveal outlier samples which are not near other samples from
the same population. For example, the green circles near purple squares and pink circles indicate
samples with family trees from Italy, but their DNA is more similar to people from Spain and Portugal.
These are examples where the specified population of origin disagrees with the genetic origin

represented in PCA space.

We visually inspect candidates for removal based on a scatterplot like the one in Figure 2.2. Because
different collections of samples reveal different amounts of population structure, PCA and outlier removal
are repeated for different subsets of data. We first remove outliers at the global level (all samples
together), then at the continental level (e.g., outliers in a PCA using only European samples), then at the
regional level (e.g., outliers in a PCA of all Scandinavian samples), and finally at the population level (e.g.,

outliers from a PCA of Norway).

2.4 Iterative Reference Panel Refinement

After removing PCA outliers, we divide our global reference panel into populations corresponding to
distinct genetic clusters in the PCA plots. Before using the reference set to estimate ethnicities of
AncestryDNA customers, we first determine its quality by measuring the performance of our ethnicity
estimation on the reference set itself. How well does our ethnicity estimation do on samples that by

definition are 100% of a single ethnicity?

To do this, we remove 5% of samples from the reference panel and estimate their ethnicity using the
remaining 95% of samples as the new reference panel. We repeat this process 20 times, each time
removing a different 5% of the panel and estimating their genetic ethnicities using the remaining 95%. We
then look at the average predicted ethnicity for samples from each region in the reference set using the
results of these cross-validation experiments. Figure 2.3 shows the results of this experiment as box

plots.
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Figure 2.3: 20-fold cross-validation analysis of the Ethnicity 2020 reference panel. Here we plot the results of an experiment in
which 5% of samples are removed from the reference panel, and their ethnicity is estimated using the remaining (95%) panel
samples. Each boxplot represents the distribution of estimated ethnicity for all samples from a given region (75%, 50%, and 25%
percentiles of estimated ethnicity). For the majority of samples in each region, we predict on average 84.2% of the genetic ethnicity
to be from the correct region. And for the most part, the other 15.8% comes from nearby regions. However, there are exceptions. In
particular, our average prediction accuracy for samples for Indigenous Cuba and Basque are not quite as high. There are many
factors affecting the accuracy of these numbers, most importantly the number of reference samples in the panel for each region and

the genetic distinctness of each region.

The purpose of this analysis is twofold. First, reference panel samples with extremely poor performance in
the cross-validation analysis are removed, as they may poorly represent their ethnic group of origin.
Second, the cross-validation experiments allow us to demonstrate our ability to accurately estimate the
ethnicities of our reference panel samples using our ethnicity estimation method (see section 3) and thus
help us redefine population boundaries. For example, we may merge two populations if performance in

the cross-validation experiment is poor in each group but is found to be better in a merged group.

After performing several rounds of reference panel refinement based on cross-validation experiments, we
settled on dividing our latest reference panel into 70 global regions. These regions are described in

further detail below.

2.5 Updated Reference Panel

The updated AncestryDNA ethnicity estimation reference panel contains 44,703 samples carefully
selected as described above to represent 70 global regions (Table 2.1), each with a unique genetic

profile. As a comparison, our previous panel of 40,016 samples represented 61 distinct global regions.

Region Number of samples
IAboriginal & Torres Strait Islander 24
Baltics 195
Basque 31
Benin & Togo 466
Burusho 23
Cameroon, Congo & Western Bantu Peoples 533




Central Asia—South

383

Indigenous Cuba 3,420
Cyprus 161
Dai 65
Eastern Bantu Peoples 138
Eastern Europe & Russia 1,084
Eastern Polynesia & New Zealand Maori 188
England & Northwestern Europe 1,326
Ethiopia & Eritrea 85
European Jewish 448
Finland 402
France 1,754
Germanic Europe 2,095
Greece & Albania 405
Guam 57
Indigenous Americas—Andes 139
Indigenous Americas—Central 1,232
Indigenous Americas—Colombia & Venezuela 2,500
Indigenous Americas—Mexico 720
Indigenous Americas—North 2,284
Indigenous Americas—Yucatan 156
Indigenous Arctic 36
Indigenous Eastern South America 2,873
Indigenous Haiti & Dominican Republic 2,858
Indigenous Puerto Rico 4,791
Iran/Persia 627
Ireland 732
Ivory Coast & Ghana 236
Khoisan, Aka & Mbuti Peoples 38
Korea 197
Mali 408
Malta 106
Melanesia 50




Middle East 466
Mongolia & Central Asia—North 229
Nigeria 521
Northern Africa 123
Northern Asia 43
Northern China 251
Northern India 514
Northern Italy 554
Northern Japan 150
Northern Philippines 150
Norway 642
Portugal 713
Samoa 76
Sardinia 38
Scotland 1,411
Senegal 114
Somalia 32
Southeast Asia 240
Southern Bantu Peoples 162
Southern China 208
Southern India 169
Southern ltaly 971
Southern Japanese Islands 42
Southern Philippines 124
Spain 637
Sweden 740
The Balkans 824
Tonga 94
Turkey & the Caucasus 393
\Vietnam 236
\Wales 480




Total 44703

Table 2.1: The Final AncestryDNA 2020 Ethnicity Reference Panel

We discuss more detailed tests of the performance of the 2020 ethnicity panel in Section 4. For details of

the method AncestryDNA uses for genetic ethnicity estimation, see Section 3.

3. AncestryDNA Ethnicity Estimation

3.1 Introduction

After establishing and validating the reference panel, the next step is to estimate a customer’s ethnicity by
comparing over 300,000 single nucleotide polymorphisms (SNPs) from their DNA to those of the
reference panel. We assume that an individual’s DNA is a mixture of DNA from the 70 populations
represented in the reference panel. This is illustrated in Figure 3.1, where, because of recombination, a
customer inherits long stretches of DNA from his or her four grandparents who, in this example, come
from four “single source” reference populations.

Because DNA is passed down from one generation to the next in long segments, it is likely that the DNA
at two nearby loci in the genome were inherited from the same person and so the same population (for
more details on DNA inheritance see our DNA Matching White Paper
http://dna.ancestry.com/resource/whitePaper/AncestryDNA-Matching-White-Paper). This means we can
get more accurate results by looking at multiple nearby SNPs together as a group, or haplotype, instead
of looking at each SNP in isolation. Our method takes advantage of this to greatly improve our estimates.

We estimate a customer's genetic ethnicity by assuming that each segment of their genome comes from
one of the 70 populations in the reference panel. We divide the customer’s genome into 1,001 windows.
We assume that each window is small enough that each of the two parental haplotypes present in the
window came from exactly one population. We then combine information from all the windows to estimate
what overall portion of the customer’'s genome came from each of the populations in the reference panel
using a hidden Markov model (HMM).



As you can see in Figure 3.1, each window does not have to have a single ethnicity associated with it.
Instead, it can have one from one parent and one from the other. For example, the first window has two
different ethnicities represented by the colors green and red. Any ethnicity estimator that uses the
technology AncestryDNA does to read DNA has to account for the possibility of two separate ethnicities in
each window. In other words, it has to employ a model that looks at the DNA and can identify the DNA as
a mix of red and green as opposed to just red or just green (or any of the other possible combinations).

Customer’s grandparents

I I Customer’s genome

Customer's
parents

——— 1=
|

Figure 3.1: Inheritance of DNA from different populations. On the left, we present a three-generation genetic family tree. For
each individual, we show two vertical bars representing the two copies of a single chromosome present in each individual. These
bars are colored to show the reference population from which they inherited their DNA. Each of the four grandparents (solid bars,
top row) has inherited 100% of their DNA from a single population that is different from the other three. The DNA is passed forward
to the parents and finally to the customer, who, through the process of recombination and assortment, ends up inheriting a shuffled
set of chromosomes from each parent. The colors show that the customer’s DNA is a mixture of the DNA inherited from their four
grandparents, with long stretches inherited from the same grandparent. On the right, we show that to obtain a customer’s ethnicity
estimate, we divide the customer’s genome into small windows (represented by black horizontal lines). For each window we assign
a single population to the DNA within that window inherited from each parent, one population for each parental haplotype. Each

window gets a population assignment based on how well it matches genomes in the reference panel.



3.2 Principles of a Hidden Markov Model

When we analyze DNA data, we do not know the population it comes from ahead of time. Instead, we
observe a pair of alleles (often called a genotype) at each position (or SNP) in the DNA. One allele was

inherited from Mom and the other from Dad.

Because the probability of a specific pair of alleles appearing at a certain position in the DNA varies for
each of our 70 regions, we can use that information to tell us which region a stretch of DNA most likely
came from. For example, if AA at a particular position is more common in people from Spain, someone

with AA at that location might have a higher chance of having Spanish ancestry.

It is important to keep in mind that an AA at this particular position just makes it more likely the DNA
comes from Spain. Plenty of people from Portugal, France, or even Korea might have AA at this position
as well. The ethnicity estimate uses the probability at all positions within a window to determine where the
DNA most likely came from. We infer the genetic ethnicity of each position using a statistical tool called a
hidden Markov model (HMM) [Rabiner, 1989].

A customer’s genome is a sequence of nucleotides—As, Ts, Cs, and Gs—strung together to make a
chain. The precise nucleotide at any position depends on what population that segment of DNA has come
from, but that information is not known. In determining ethnicity, an HMM statistically determines the most
likely ancestral reference population from which a segment of DNA originates, its most likely “hidden
state,” based on a sequence of observations (in this case, the genotypes, or particular combination of
SNPs).

We divide the customer’s genome into 1,001 stretches of DNA called windows and determine the hidden
state for each of them. Each window has two stretches of DNA, one from Mom and one from Dad, and
they can either both be from the same ethnicity or from different ones. So the hidden state in this case is

the ethnicity of each segment of DNA in the window.

In addition, with this release we updated our algorithm to be able to tell which ethnicities were inherited
from one parent and which ethnicities were inherited from the other parent. Our phasing algorithm (the

way we assign DNA as coming from each parent, described in AncestryDNA matching white paper) may



make some errors by accidentally assigning one parent’s DNA to the other parent and vice versa. Thus,
we also keep track of whether the HMM thinks we need to swap the DNA our phasing algorithm assigned

to each parent in each window.

HMMs have two components, called emission and transition probabilities. Emission probabilities tell us
how likely it is that a stretch of DNA came from each of the 70 populations based on the observed
sequence. The transition probability indicates how likely it is that there will be a change in the population
identification from one window to the next. In other words, if the DNA in the current window is from only

Sweden, how likely is the DNA in the next window to also be from only Sweden?

This is a sensible model for human DNA because human genomes are organized linearly along
chromosomes. Additionally, the nature of inheritance means that whole segments of the genome, and,
therefore, many consecutive nucleotides that Ancestry looks at along a chromosome, will have the same

DNA ancestry.

3.3 Inferring Ethnicity Estimates from a Genome-Wide HMM

At AncestryDNA, we use microarrays to obtain DNA data from customer samples. We look at over
700,000 individual locations on the DNA (SNPs) and determine the nucleotides at each position. For
example, we may see an A and a T at position 1, a G and a G at position 2, and so on. We use around
300,000 of these SNPs in the ethnicity estimate.

In working with data from arrays, it is important to remember that people have two copies of each of the
22 chromosomes that AncestryDNA reports data back on. One set of chromosomes comes from Mom
and the other from Dad. This means there are two results for each position AncestryDNA analyzes, and
those results must be interpreted to assign which DNA came from which set of chromosomes (this
process is called phasing). AncestryDNA must consider what possible combinations of ethnicities might
look like. For example, if one customer has a section of their DNA that came from Swedish ancestors
from Mom’s side of the family and Korean ancestors on Dad’s, the algorithm must be able to distinguish
this from a second customer with Swedish and Nigerian ancestors. In addition, because our phasing
algorithm sometimes misassigns which DNA came from one parent and which DNA came from the other
parent, we can use the fact that each parent has different ancestry to improve our assignments of which

DNA came from each, and we include that as part of the hidden state.



We create a genome-wide HMM (illustrated in Figure 3.2) where each possible ethnicity combination (or
hidden state) is represented by which population one parent’s DNA could be from and which population
the other parent’'s DNA could be from in a window of the genome, and changes between windows that are
next to each other are unlikely to change the state. In other words, if in the preceding window the DNA
from one parent and the DNA from the other parent both came from Nigeria, then the next window is
more likely to be the same.

The state in a given window is a pair of populations, one assigned to one parent and one assigned to the
other, where each ethnicity in the pair can be different (e.g., red and green in window 1 of the third row of
Figure 3.2) or the same (e.g., green and green in window 1 of the top row of Figure 3.2). Each population
pair assignment has a probability of appearing (or the “observed genotypes”) in the window (emission
probability). In order to fix the errors from our phasing algorithm, we now also keep track whether or not

the model thinks that the DNA assigned to one parent and the other parent needs to be flipped.

We also account for the probability of changing population assignments between adjacent windows
(transition probability). Essentially this means that if you are, for example, Sweden/Sweden in one
window, there will need to be very strong evidence from the observed DNA data that the neighboring
window has a different population assignment. By applying these probabilities to the whole genome, we

can obtain a sequence of population assignments along a customer's genome.
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Figure 3.2: An illustration of the genome-wide HMM for three populations. The genome is divided into W windows, and we
model transitions from a given window w, to the adjacent window w+1. Here, the possible (hidden) states for a window are
represented by colored squares, with different colors representing different population assignments. Boxes with two

different colors represent mixed ancestry in the window. Arrows between boxes represent transitions, and each box/state

emits the customer’s observed genotype with a probability that was pre-computed in the previous step. Transitions that do



not result in a change in state/colors between two windows are more likely than those that do. Only transitions that result

in at most one color/population change are allowed.

3.4 Transition Probabilities

Transition probabilities are really just the odds that an ethnicity will change from one window to the next.
Ancestry only considers a transition to the window that is immediately adjacent, so the only things that
determine the transition probability are the state at the current window and the state it transits to at the

next window. This “memoryless” property is a key feature of an HMM.

We do not allow transitions between states where both populations are different because from a biological
perspective, it is very unlikely that there would be a change in the same window in both the set of DNA
from Mom and the set of DNA from Dad. This greatly reduces the number of possible transitions and the

complexity of the HMM.

The exception to this rule is when there is a transition from the end of one chromosome to the beginning
of the next. In these cases, changes are much more likely than they are within the same chromosome
because the DNA in different chromosomes are not connected. This is accomplished by forcing a silent
state between chromosomes, which makes sense because there is no connection between two
chromosomes. The transition probability from a silent state to a given pair of population assignments is
simply given by the genome-wide probability of any position of the genome having that population
assignment. In other words, there is no information from a previous window to affect the interpretation of a
window that immediately follows a silent state. We estimate this value as part of the HMM. Initially, this
value is set to be the same for every population pair and is learned during the iterations of the HMM as

each sample is processed.

Finally, we also need to consider transitions between the two possible assignments of each parent's DNA
by our phasing algorithm. In this case, we assume that between any pair of windows, there’s a very small
chance that the phasing algorithm “switched” which DNA it assigned to one parent and which DNA it
assigned to the other parent. The HMM uses information from the rest of the genome to determine when
to switch. For example, if Mom is mostly Swedish and Dad is mostly Chinese, and the model encounters
a place where it thinks Mom’s DNA is Chinese and Dad’s DNA is Swedish, it will flip the assignment at

that point.



3.5 Emission Probabilities

Determining how likely the DNA in a window came from a population (the emission probability) is a

complicated process and is described in more detail in our scientific paper Ancestry Inference Using

Reference Labeled Clusters of Haplotypes.

Briefly, our approach includes the following steps:

Define the windows. DNA is inherited in long stretches of contiguous DNA within chromosomes
referred to as haplotypes. Working with these blocks of DNA can be more informative than
working with individual positions within the DNA. We do not know the exact haplotype
boundaries, which differ between people, but we can achieve a good approximation by dividing
the genome into 1,001 small windows. Each window covers one section of a single chromosome
and is small enough (e.g., 3-10 centimorgans) that both the maternal and paternal haplotype, the
DNA from Mom and the DNA from Dad, in a given window are likely to each come from a single,
though not necessarily the same, population.

Create the haplotype models. Next we need to compare a customer’s haplotype within a
window to those in our reference panel to assess how likely it is to have come from each
population. For example, how likely are both segments of DNA in a haplotype to come from
Sweden vs. one from Sweden and one from France, and so on through all of the possibilities. To
do this we first need to create a haplotype model. We do this by constructing a BEAGLE
[Browning, 2007] haplotype cluster model for each window using hundreds of thousands of
haplotypes (see Matching white paper for more on this). Since we start with unphased customer
genotype data, data in which maternal and paternal haplotypes are not distinguished, the model
accounts for all possible haplotypes given a set of genotypes, and each state in a haplotype
cluster model represents a cluster of similar haplotypes.

Annotate the reference panel. We want to identify the haplotype clusters in our model that are
associated with each population in the reference panel. Because we are confident in the
geographic origin of members of the reference panel, we are able to calculate the probability that
a haplotype from a given population is represented by a particular haplotype cluster. These
values are used to compute the emission probabilities in the genome-wide HMM that assigns
ethnicity.

Compare the test sample to the reference panel to assign population labels using an HMM.
To do this, we compute the likelihood that the pair of haplotypes present in each window of a test

sample come from the populations in the reference panel. For each window, both haplotypes may


https://www.biorxiv.org/content/10.1101/2020.09.23.310698v2
https://www.biorxiv.org/content/10.1101/2020.09.23.310698v2

come from the same population or from different populations, and the resulting emission

probabilities are calculated for all possible combinations.

HMMs are used in a number of existing approaches for estimating ancestral proportions [Maples 2013].
The key part of our method is step Ill, where we use rich haplotype models in each window, annotated
with population labels from the haplotypes in our reference panel, to assign a likelihood over all
population labels to the haplotypes in our test sample. It is worth noting that our method lends itself to
high-throughput ethnicity estimation, as steps (1) through (lll) above—learning the haplotype models from a
large training set and then annotating them with the reference panel populations—need only be carried out

once.

3.6 HMM Model

We use HMMs because they can effectively consider all possible ethnicity assignments to all windows in
the genome and do so efficiently. Ancestry runs our HMM on a customer’s DNA to find the most likely
sequence of ethnicities along the DNA. In more technical terms, the algorithm takes the “Viterbi” path, the
sequence of hidden states that returns the highest probability. The final ethnicity proportions the
customers receive are calculated by counting the proportion of the Viterbi path (weighted by
recombination distance) that are assigned to a particular population in the reference panel. For example,
a customer with the sequence Sweden/Sweden, Sweden/Sweden, Sweden/Sweden, France/Sweden,
France/Sweden (and an incredibly small genome!) would be 20% France and 80% Sweden, given the five

windows have identical size.

Because these proportions are estimates, we need a way to determine the confidence surrounding these
values. To do this, we randomly sample 1,000 non-Viterbi paths, or paths that might not be the most likely
(but are still likely). In each of the 1,000 runs, a given window is assigned a population pair with a
probability that depends on the assignment, within the same run, of the previous window and the
predetermined transition and emission probabilities. These 1,000 values are used to provide a confidence

range on the reported Viterbi estimate.
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Figure 4.6: lllustration of the Viterbi path, represented by arrows, through the HMM that determines an ethnicity estimate.
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Figure 4.7: lllustration of our stochastic path-sampling process.

4. Assessing Ethnicity Estimation Performance

After developing and optimizing both the estimation process and the reference panel, the final
step is to determine how well they perform together at assigning ethnicity. Basically, we see
how close our process gets to the right answer through rigorous testing using a wide variety of
test cases with known ethnicity.



4.1 Cross-Validation

We evaluate the performance of the ethnicity estimation process by running it on two different
test cases where we know what the correct answer should be: single-origin individuals
(including synthetic single-origin individuals) from the reference panel and synthetic individuals
with mixed ethnicities. We gauge its effectiveness by seeing how close we get to the true
ethnicity.

Reference panel groups: Our reference panel has two types of reference groups. In the first,
people have a long family history in a single region with no influx of other individuals to that
region. They represent a typical person from that region and by definition, have 100% of the
region they represent in their DNA. The second group is a little more complex. This group
represents indigenous peoples who also have ancestors from a different region. An example
would be people from Mexico who may have Native American, European, and African
ancestors. We are able to include only the parts of their DNA that are Native American (or
indigenous) to the reference panel.

Single-origin individuals: We use two different sets of single-origin individuals in our cross
validation studies. The first are those for whom we utilize their entire genome as a reference for
a particular region. By definition these individuals in our reference panel each have 100% of a
single ethnicity.

This approach does not work for the reference panel regions where we used the indigenous
DNA of admixed individuals. For these reference panel regions, primarily from the Americas and
Oceania, we created synthetic single-origin individuals by piecing together genotype sequences
that represented indigenous ancestry from multiple individuals. These synthetic single-origin
individuals are then used to evaluate the accuracy of our method.

We evaluate our process by running 20-fold cross-validation experiments using these
single-origin individuals from our reference panel. For example, if we had 100 people in each
reference panel group, we would take 5 from each of the 70 groups and run the algorithm on
these 300 samples using the remaining 5,700 individuals as the reference group. Then a
different 5 would be taken from each group and the process repeated 20 times so that every
individual in the reference panel is tested.

Overall we observe that the updated process correctly assigns an average of 84.2% of the
genetic ethnicity to the correct region for single-origin individuals from our reference panel



(Figure 2.3). We predicted nearly 100% of the genetic ethnicity from the correct region for the
following groups:

European Jewish

Indigenous Americas—North

Indigenous Puerto Rico

Indigenous Americas—Mexico

Indigenous Arctic

Eastern Polynesia & New Zealand Maori
Northern Japan

Indigenous Americas—Colombia & Venezuela
Cameroon, Congo & Western Bantu Peoples
Finland

Mali

Ireland

Melanesia

Middle East

Indigenous Eastern South America

Khoisan, Aka & Mbuti Peoples

For some regions, such as Indigenous Cuba, Basque, Guam, and Indigenous Haiti & Dominican
Republic, the numbers are not as high, with average assignments of 32%, 51%, 48%, and 52%
to the correct region, respectively. However, even if the prediction accuracies fall short of 100%
for some regions, the remaining ethnicity is still assigned to nearby regions. For example,
individuals from Basque might get some assignments to Spain; individuals from Guam might get
some level of assignment to Northern Philippines (see Figure 4.2).
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Figure 4.2: Average estimated ethnicities for single-origin individuals from each population. In this graph, each row
represents single-origin individuals from the population listed. Each column represents each of the possible 70 ethnicities
that the single-origin individual might be assigned to. The graph is set up such that the matching individual and his or her
ethnicity are aligned along the diagonal line. If the algorithm worked perfectly, there would be only red boxes along the
diagonal—red represents 100% origin from that population. Any boxes that are not on the diagonal represent misassigned
populations. This graph also shows that certain ethnicities can be confounded by other ethnicities. For example,
individuals with 100% Germanic Europe ethnicity can be assigned to England & Northwestern Europe and Sweden.

Synthetic individuals with mixed ethnicities: We also evaluated the accuracy of ethnicity
estimates for “synthetic” individuals of mixed ethnicity origins. These test cases are simulations
we construct with known mixtures of ethnicities. Each synthetically admixed individual can have
as few as 2 or as many as 27 ethnicity regions, with various proportions. Since the true ethnicity
proportions are known, we can calculate precision and recall for each ethnicity region. Precision
and recall are two important factors in evaluating our estimation process.

Precision can be thought of as how much of the reported ethnicity is true. For example, if our
process predicts an individual has 40% Northern Africa, but only 30% really is, then the process
has a precision of 0.75 for Northern Africa ethnicity. Mathematically, precision is expressed as
the amount of correctly identified ethnicity divided by the estimated value for that region.



Recall can be thought of as how much of the true ethnicity is called by the process. Keeping
with our Northern Africa ethnicity, imagine that an individual has 50% Northern Africa ancestry,
but the algorithm predicts 40%. In this case, the process has a recall of 0.8 for Northern Africa
ethnicity.

Table 4.1 : Precision/Recall for each region calculated from ethnicity estimates of synthetic individuals

with mixed ethnicities.

Region Precision Recall
Aboriginal & Torres Strait Islander 1.0 0.8
Baltics 0.57 0.83
Basque 0.79 0.58
Benin & Togo 0.87 0.96
Burusho 0.99 0.52
Cameroon, Congo & Western Bantu Peoples 0.93 0.98
Central Asia—South 0.89 0.75
Cyprus 0.73 0.65
Dai 0.67 0.63
Eastern Bantu Peoples 0.98 0.9
Eastern Europe & Russia 0.76 0.86
Eastern Polynesia & New Zealand Maori 0.98 0.94
England & Northwestern Europe 0.55 0.67
Ethiopia & Eritrea 0.92 0.97
European Jewish 0.94 0.99
Finland 0.86 0.98
France 0.82 0.68
Germanic Europe 0.81 0.6




Greece & the Balkans 0.68 0.56
Guam 0.91 0.45
Indigenous Americas—Andes 0.94 0.98
Indigenous Americas—Mexico 0.9 0.98
Indigenous Americas—North 0.97 0.99
Indigenous Americas—Eastern South America 0.95 0.92
Indigenous Americas—Yucatan 0.81 0.77
Indigenous Americas—Central 0.96 0.92
Indigenous Americas—Colombia & Venezuela 0.94 0.98
Indigenous Arctic 0.98 0.99
Indigenous Cuba 0.76 0.17
Indigenous Haiti & Dominican Republic 0.86 0.35
Indigenous Puerto Rico 0.98 0.89
Iran / Persia 0.88 0.65
Ireland 0.6 0.94
Ivory Coast & Ghana 0.95 0.79
Khoisan, Aka & Mbuti Peoples 0.97 0.98
Korea 0.78 0.9

Mali 0.94 0.98
Malta 0.95 0.91
Melanesia 0.97 0.99
Middle East 0.79 0.86
Mongolia & Central Asia-North 0.98 0.77
Nigeria 0.95 0.91




Northern India 0.84 0.78
Northern Africa 0.95 0.89
Northern Asia 0.72 0.74
Northern China 0.86 0.83
Northern ltaly 0.6 0.47
Northern Japan 0.86 0.94
Northern Philippines 0.88 0.9

Norway 0.67 0.88
Portugal 0.89 0.67
Samoa 0.9 0.86
Sardinia 0.91 0.73
Scotland 0.66 0.83
Senegal 0.96 0.94
Somalia 0.94 0.92
Southeast Asia 0.97 0.73
Southern Bantu Peoples 0.97 0.99
Southern China 0.86 0.9

Southern India 0.64 0.9

Southern ltaly 0.82 0.7

Southern Japanese Islands 0.89 0.84
Southern Philippines 0.89 0.89
Spain 0.81 0.61
Sweden 0.68 0.8

The Balkans 0.83 0.66




Tonga 0.87 0.92

Turkey & the Caucasus 0.6 0.7

Vietnam 0.76 0.9

We found that most ethnicity regions have precision and recall that are both higher than 60%,
especially several regions that perform extremely well:

e Malta

e Eastern Polynesia & New Zealand Maori

e Melanesia

e Indigenous Arctic

e Indigenous Puerto Rico

e |ndigenous Americas—Andes

e Indigenous Americas—Central

e Indigenous Americas—Colombia & Venezuela
e Indigenous Americas—Mexico

e Indigenous Americas—North

e Indigenous Americas—Eastern South America
e Cameroon, Congo & Western Bantu Peoples
e Eastern Bantu Peoples

e Khoisan, Aka & Mbuti Peoples

e Mali

e Nigeria

e Senegal

e Somalia

Some regions, such as Indigenous Cuba and Guam have relatively lower recall, 17% and 45%
respectively, while some regions, such as England & Northwestern Europe, Turkey & the
Caucasus, and Baltics have relatively lower precision, 55%, 60%, and 57% respectively.

4.2 Region Assessment

We have 70 regions in our reference panel, but there are thousands of ethnicities in the world. We don’t
always have ethnicity information but can use people with deep roots from the same country or part of a
country to assess how our regions perform in different parts of the world and to help our customers

interpret their results. To find these individuals, we use customer-created family trees and look for



customers who have consented to research who have all of their ancestors from the same country.
Ideally, we’d use people with all of their grandparents from the same country, but due to low numbers for

some countries we sometimes use parents.

Customers who are not in the reference panel and have deep trees tracing back to a single country are
expected to have high assignments to the regions associated with that country, and this is what we
generally find. For example, Figure 4.3A shows the average ethnicity assignments for 200 customers with
all four grandparents born in Germany and Figure 4.3B shows a similar situation for 200 customers with
all four grandparents born in Korea. . As you can see, while most of their assignment is to the Germanic
Europe region, other regions do appear in small but significant amounts. These analyses help ensure that

ethnicity estimates for people from a region agree with expectations.
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Figure 4.3 Average ethnicity assignments based on grandparental birth location. Average ethnicity assignments for customers

with all four grandparents born in the same country. (A) Germany, (B) South Korea

We also use the maps like the one shown in Figure 4.4 to ensure that ethnicity estimates make sense

geographically. The geographic distribution and amount of ethnicity estimates within a country can often

help make sense of otherwise surprising results. For example, as you can see in Figure 4.4, there is

assignment to the Scotland region in the Brittany region of France. This makes sense because of shared



Celtic ancestry in both Scotland and Brittany, where the Celtic language Breton is traditionally spoken.

Scotland estimates in England also likely reflect its history of Celtic ancestry in that area.



% assignment

85%

75%

50%

25%

5%

Figure 4.4 Map of average Scotland estimates. Average estimates between 5% and 25% (darker blue) in Wales, England, and
Ireland and between 25% and 50% (light blue) in Brittany likely reflect shared Celtic ancestry.



These analyses help us understand the genetic diversity of the regions and allow us to better
communicate these results to our customers (e.g., even if all of a customer’s ancestors are German, the
customer can expect to have some amount of genetic ethnicity from adjacent regions). These analyses

also aid us in prioritizing future developments for further ethnicity estimation updates.

4.3 Regional Polygon Construction

We divide the world into 70 regions in our reference panel. Each region represents a population with a
unique genetic profile reflecting their shared ancestry. Where possible, we use the known geographic
locations of our samples to guide how we create the regions. Figure 4.5 shows an example of the
information used to define region polygons.
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Figure 4.5: Using geographical sample locations to draw regional polygons. Panel A shows the distribution of the England &
Northwestern Europe ethnicity predicted for a set of samples with geographic information. Samples are assigned to grids of 0.5
degrees longitude by 0.5 degrees latitude based on the average birth location of their ancestors’ grandparents. The color of each
grid squarepoint on the map represents the average England & Northwestern Europe ethnicity of samples from each grid. Panel B
shows the maps after filling in missing regions and smoothing the results. The information is processed with kernel smoothing to

create the outlines representing the ancestry regions shown to customers, as shown in panel C.

In Figure 4.5A, we show the amount of ethnicity assigned to the England & Northwestern Europe region
for a combination of reference panel samples and customers with deep roots from the same country.
Figure 4.5B shows the results after imputing values to fill in gaps and applying smoothing methods to
make the plot less spotty. It is clear from the plot that there is a gradient of ethnicity in this region that is
centered in England that quickly tapers off in surrounding regions. For example, the next level of
concentration, represented by light blue in the image, is in northeastern France, Belgium, the
Netherlands, and Switzerland. The ethnicity gradient continues to diminish as represented in purple, with
the borders reaching as far away as Northern Italy, Norway, and Portugal. This information is used to

make the maps (Figure 4.5C) presented as part of the AncestryDNA product experience.

Importantly, these maps do not represent where we think a customer’s ancestors may be from. Instead
they are best thought of as an extension of the region name but can more easily provide information than
words alone. Helpfully, the polygons show how much assignment to each region is typically seen among
people with deep roots from a given location. These polygons appear as nested regions with increasing
depth of shading. In this figure, the reddish brown regions represent the regions with the highest average
assignments. The blue/purple regions have lower average levels. Each set of polygons is accompanied

by a detailed account of the history of the region.



The map below shows polygons for all 70 ethnic groups mostly based on the polygons with 50% or more

assignment, constructed as described above.

4.4 Reporting uncertainty of estimated values

Ethnicity estimates are not an exact science. The percentage AncestryDNA reports to a customer is the
most likely percentage within a range of percentages. In this section, we discuss how we calculate this
range. It is important to keep in mind that here at AncestryDNA we continue to build upon our previous

work to offer ever more accurate results to our customers.

So, for example, we might report someone as 40% England & Northwestern Europe with a confidence
range of 30-60%. This means that they are most likely 40% England & Northwestern Europe but they
could be anywhere between 30% and 60% England & Northwestern Europe.

As discussed in section 3, we run a genome-wide Viterbi estimate on a customer’s DNA sample and
report that back as the customer’s most likely ethnicity estimate. From this we are able to get transition
probabilities that we can then use to generate new ethnicity estimates that while likely, are not the most

likely. The range is based on 1,000 of these sampled paths. For example, if a window has an 80% chance



of being from England & Northwestern Europe, then it has a 20% chance of being from some other

region. The confidence interval captures these sorts of lower chances across a customer’s DNA.

We devised a way, using the 1,000 sampled estimates, to estimate the confidence interval surrounding
the Viterbi estimate reported to the customer. Our objective when defining this approach was to maximize
the probability that the reported range contains the true ancestry proportion (recall), while also

maximizing precision by maintaining a fairly narrow range.

We take the mean and standard deviation of the 1,000 sampled estimates and use these to calculate a
confidence range surrounding the Viterbi estimate. When calculating this range, we take into account the

value of the Viterbi estimate and the population for which we are calculating the range.

We can test our process for calculating the range using the same synthetic admixed individuals used for
the cross-validation studies to determine how often it correctly gets the known ethnicity percentage within
the range. In other words, how often does the range overlap the known ethnicity. We find that the
algorithm performs very well for some populations and less well for others. Since we know the true
ethnicity, we can incorporate correction factors specific for each population to maximize the probability
that the true ethnicity falls within the range.

A large range often reflects the challenges we face because nearby regions have similar DNA. What this
means is that if a customer’s ethnicity estimate has many nearby regions, their ranges will most likely be
larger than if it contained more distant regions. For example, while we may be fairly certain that a
customer has 50% Korea and 50% Sweden ancestry (and therefore small ranges), we may be less sure
about a customer who gets 50% Norway and 50% Sweden. It is relatively easy to tell Korea from Sweden
but relatively hard to tell Sweden from Norway. This may be reflected in the larger ranges for the second
customer. But it is important to keep in mind that we are very confident of the European heritage of
customer two, we are just less certain about how much ancestry is derived from Sweden and how much
from Norway. It is worth noting that, in general, as we increase the precision of our regions (e.g., breaking
Ireland & Scotland into two separate regions), the ranges may become larger, and that this is due to the
fact that DNA from neighboring regions is still very similar.



5. Future Ethnicity Estimation Refinement

While AncestryDNA is extremely proud of the updates in this release of its genetic ethnicity estimation
process, we will continue to improve the product over time. The availability of new data, the development
of new methodologies, and the discovery of new information relating to patterns of human genetic

variation will all necessitate future improvements to the product.

Extensive Testing

Figure 5.1: Ethnicity Improvement Cycle.

Each of the steps above represents a critical part of our ethnicity estimation procedure and development.
Currently, we are working to further expand our global reference panel for future ethnicity updates. We
have already begun genotyping and analyzing samples for a future update which will provide finer-grained
estimates of ethnicity. We have also begun a new diversity initiative to gather DNA samples from
underrepresented regions around the world in order to expand the number of regions we can report back
to customers.

Simultaneously, we are also working to improve our algorithms for ethnicity estimation. Future ethnicity
updates will include an improvement to our statistical methodology that will more fully leverage

information in genetic data to reveal even more information about population history. Along the way, we



always perform thorough testing, involving analyses like those described above. These tests inform the

focus of our improvements and help to refine our improvements as necessary.

Each new release of genetic ethnicity estimation will represent a step forward in our ability to give our
customers a complete description of their genetic ancestry and inform them about their ancient genetic
origins. We hope that, like the entire team at AncestryDNA, our customers will look forward to these future

developments.
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