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Summary: 
  
The AncestryDNA science team has developed a fast, sophisticated, and accurate method for 
estimating the historical origins of customers’ DNA going back several hundred to over 1,000 
years. We have recently refined this method, resulting in an increase int the number of regions a 
customer might be assigned to. The update also enhanced the precision of both the regions 
assigned and the percentage assigned to each region. Many of these enhancements come from 
the updated method of analyzing segments of DNA instead of single positions. Given the 
cutting-edge nature of this type of science, we expect that we will be able to continue to refine 
our approach and improve estimates as the science evolves. 
  
To create this portion of the ethnicity estimate, we compare a member’s DNA to a panel of DNA 
from people with known origins (referred to as the reference panel) and look to see which parts 
of the customer’s DNA are similar to those from people represented in groups in the reference 
panel. If, for example, a section of a customer’s DNA looks most similar to DNA in the reference 
panel of people from Sweden, that section of the customer’s DNA is assigned to Sweden. The 
end result is a portrait of a customer’s DNA made up of percentages of the 43 ethnicities 
contained in the reference panel. 
  
That is a summary of how AncestryDNA determines this portion of a member’s ethnicity 
estimate. The rest of this white paper will explain in more detail 
  
1.       How the reference panel samples are chosen, their makeup, and how the panel is 
validated 
2.       How the algorithm that determines a customer’s genetic ethnicity works and how it is 
validated 
 
 
 



 
 
 
 
 
 

1. Introduction 

Genetic ethnicity estimates are an important component of the DNA Story provided by 

AncestryDNA. As its name suggests, DNA Story provides customers with insights into their past 

by analyzing their DNA.  

AncestryDNA has employed a team of highly trained scientists with backgrounds in population 

genetics, statistics, machine learning, and computational biology to develop fast, sophisticated, 

and accurate methods for estimating genetic ethnicity for our customers. In this document, we 

describe the approach we use to estimate one portions of our customers’ genetic ethnicity. We 

will discuss the development of the reference panel we compare each customer sample against, 

the inference method we apply to estimate genetic ethnicity, and finally the extensive testing 

regimen we employ to assess the quality of our estimates.  

Glossary 

Allele — A variant in the DNA sequence. For example, a SNP (defined below) could have two alleles: A 
or C. 
Centimorgan (cM) — A unit of genetic length in the genome. Two genomic positions that are a 
centimorgan apart have a 1% chance during each meiosis (the cell division that creates egg cells or 
sperm) of experiencing a recombination event between them.  
Chromosome — A large, inherited piece of DNA. Humans typically have 23 pairs of chromosomes with 
one copy of each pair inherited from each parent. 
Genome — All of someone’s genetic information; the DNA on all chromosomes 
Genotype — A general term for observed genetic variation either for a single site or the whole genome. 
Haplotype — A stretch of DNA along a chromosome 
Hidden Markov model (HMM) — A statistical model for determining a series of hidden states based on a 
set of observations 
Locus — A location in the genome. It could be a single site or a larger stretch of DNA. 
Microarray — a DNA microarray is a way to analyze hundreds of thousands of DNA markers all at once. 
Nucleotide — DNA is composed of strings of molecules called nucleotides (also called bases).  There 
are four different types and they are usually represented by their initials: A, C, G, T. 
Population — A group of people 
Recombination — Before chromosomes are passed down from parent to child, each pair of 
chromosomes usually exchange long segments between one another and then are reattached in a 
process called recombination.  
Single nucleotide polymorphism (SNP) — A single position (nucleotide) in the genome where different 
variants (alleles) are seen in different people. 



 
 
 
 
 
 

2. Reference Panel 

2.1 Calculating an Ethnicity Estimate 

Two chromosomes from the same geographic region or the same population will share more DNA with 

one another than will two chromosomes from different regions or groups. So two pieces of DNA with a 

historical connection to Sweden will have more DNA in common than will a piece of DNA from Korea and 

a piece of DNA from Sweden. This is the basic premise behind the ethnicity estimate AncestryDNA 

provides to its members.  

To create one part of the ethnicity estimate, we compare a customer’s DNA to a panel of DNA from 

people with known origins (referred to as the reference panel) and look to see which parts of the 

customer’s DNA are similar to those from people represented in groups in the reference panel. If, for 

example, a section of a customer’s DNA is most similar to the reference panel samples from Senegal, 

then we identify that section of the customer’s DNA as coming from Senegal. 

The accuracy of our ethnicity estimate depends on the quality of our reference panel. Because of this, 

AncestryDNA has invested a significant amount of effort in developing the best possible set of reference 

samples.  

 

Figure 2.1: Reference Panel Refinement Cycle. Schematic of the ethnicity estimation reference panel refinement cycle. In step 1 

we select candidate reference samples from published data, the AncestryDNA customer list, and the AncestryDNA proprietary 

reference collection. For AncestryDNA samples we rely on pedigree data to select those with deep ancestry from a single 

population. In step 2 we filter out pieces of DNA between closely related samples from the candidate list. In step 3 we use principal 



 
 
 
 
 
 
component analysis (PCA) to remove samples that show a disagreement in pedigree and genetic origin. We also use PCA to guide 

the identification of population groups. In step 4 the panel is performance tested using numerous metrics and compared to the 

previous release. The final result is a high-quality, well-tested reference panel. The entire procedure is cyclic, and AncestryDNA will 

continue to make improvements to the panel with the goal of providing the most accurate ethnicity estimation possible with the data 

available. 

Our current reference panel includes several important enhancements. The rest of this section 2 

describes the steps taken to develop our current reference panel, including sample selection, quality 

control, and testing. The update that we describe here also increases the number of populations in our 

reference panel to 43. 

2.2 Who should be included in the reference panel? 

Identifying the best candidates for the reference panel is key to providing the most accurate ethnicity 

estimate possible from a customer’s DNA sample. Under perfect circumstances, we would construct our 

reference panel using DNA samples from people who lived hundreds of years ago. Unfortunately, it is not 

yet possible to reliably sample historical populations in this way. Instead, we must rely on DNA samples 

collected from people alive today and focus on those who can trace their ancestry to a single geographic 

location or population group.  

When asked to trace familial origins, most people can only reliably go back one to five generations, 

making it difficult to find individuals with knowledge about more distant ancestry. This is because as we 

go back in time, historical records become sparse, and the number of ancestors we have to follow 

doubles with each generation. 

Fortunately, knowing where someone’s recent ancestors were born is often a sufficient proxy for much 

deeper ancestry. In the recent past, it was much more difficult and thus less common for people to 

migrate large distances. Because of this, the birthplace of a person’s recent ancestors often represents 

the location of that person’s deeper ancestral DNA. 

AncestryDNA Reference Panel Candidates 

In developing the most recent AncestryDNA reference panel, we began with a candidate set of close to 

34,000 samples. First, we examined over 1,000 samples from 52 worldwide populations from a public 

project called the Human Genome Diversity Project (HGDP) (Cann et al. 2002; Cavalli-Sforza 2005), 

together with over 1,800 samples from 20 populations from the 1000 Genomes Project (McVean et al., 



 
 
 
 
 
 
2012). Second, we examined samples from a proprietary AncestryDNA reference collection as well as 

AncestryDNA samples from customers. Most of the candidates were selected from the last two groups 

only after their family trees confirmed that they had a long family history in a particular region or within a 

particular group. A small number of candidates were selected without a deep family tree but these passed 

the rigorous vetting process outlined below.  Although it was not possible to confirm family trees for 

HGDP and 1000 Genomes Project samples, these datasets were explicitly designed to sample a large 

set of distinct population groups representing a global picture of human genetic variation. 

2.3 Reference Panel Quality Control 

For each sample, we analyzed a set of approximately 300,000 SNPs that are shared between the 

Illumina OmniExpress platform and the Illumina HumanHap 650Y platform, which was used to genotype 

HGDP samples. After samples with large amounts of missing data were removed, we filtered out those 

which were likely to degrade the performance of the reference panel. Samples were typically removed 

because they were closely related to another reference sample or the underlying genetic information 

about a sample’s origins disagrees with the family tree data. 

When we perform genetic ethnicity estimation, we are interested in computing the probability that a 

particular segment of DNA, known as an observed haplotype, came from each possible source population 

in the reference panel (see Section 4 below). In other words, what are the odds that this particular stretch 

of DNA came from Sweden? Or France? Or any of the other regions we test? 

To do this, we need to estimate the frequency of this haplotype in each population, and this requires that 

people in the reference panel not be closely related. This is because DNA segments shared as a result of 

recent ancestry, as identified through identity by descent (IBD), do not represent independent haplotypes 

in a population, so retaining them can distort the estimates of population haplotype frequencies. This is 

why we remove such segments for candidates that share more than a certain amount of IBD DNA (20 

cM). Details about our approach for detecting shared segments of IBD DNA can be found in our 

AncestryDNA Matching white paper (https://www.ancestry.com/corporate/sites/default/files/AncestryDNA-

Matching-White-Paper.pdf).  

Next, we remove samples from the reference panel candidate set when the genetic data about ethnicity 

disagrees with what that person has reported about their ethnicity--when underlying genetic information 

disagrees with the pedigree data. We use principal component analysis (PCA) to identify these outliers. 

PCA is frequently used for exploratory data analysis in population genetics research (Jackson 2003). 



 
 
 
 
 
 
When applied correctly to genotype data, PCA can capture the genetic variation separating distinct 

populations (Patterson 2006). 

We apply PCA to the samples that have made it through the previous screening processes and plot the 

early stages of the analysis, the “first four principal components,” as a series of scatter plots. We color 

each sample by their population of origin, determined by pedigree for AncestryDNA samples and by 

sample label for public samples (see Figure 3.3). 

. 

Figure 2.2: PCA Analysis on European Panel Candidates. Scatter plot of the first two components from a principal component 

analysis (PCA) of candidate European samples for the AncestryDNA reference panel. Visual inspection of PCA is useful for 

numerous aspects of data QC. First, it can be used to identify individual outliers, such as the EasternEurope/Russia  samples 

(yellow triangles) that appear in the middle of the GermanicEurope (green triangles) cluster. It can also be useful for identifying poor 

sample grouping. Finally, it can reveal regions where there is limited genetic separation and clusters overlap (e.g. Ireland/Scotland 

and England, Wales & Northwestern Europe) and regions that can be further subdivided. 

Each population tends to form a cluster of points (each point is a sample) in the scatter plot. This is 

because points that are more genetically similar are closer in PCA space. Helpfully, these clusters of 

points tend to match geography as well because most people are genetically more similar to others from 

nearby. Furthermore, these plots quickly reveal outlier samples which are not near other samples from 

the same population. For example, the yellow triangles in the green triangle cluster indicate samples with 

family trees from Eastern Europe, but their DNA is more similar to people from Germany. These are 



 
 
 
 
 
 
examples where the specified population of origin disagrees with the genetic origin represented in PCA 

space. 

We visually inspect candidates for removal based on a scatterplot like the one in Figure 2.2. Because 

different collections of samples reveal different amounts of population structure, PCA and outlier removal 

are repeated for different subsets of data. We first remove outliers at the global level (all samples 

together), then at the continental level (e.g., outliers in a PCA using only European samples), then at the 

regional level (e.g., outliers in a PCA of all Scandinavian samples), and finally at the population level 

(e.g., outliers from a PCA of Norway). 

2.4 Iterative Reference Panel Refinement 

After removing PCA outliers, we divide our global reference panel into populations corresponding to 

distinct genetic clusters in the PCA plots. Before using the reference set to estimate ethnicities of 

AncestryDNA customers, we first determine its quality by measuring the performance of our ethnicity 

estimation on the reference set itself. How well does our ethnicity estimation do on samples that by 

definition are 100% of a single ethnicity? 

To do this, we remove 5% of samples from the reference panel and estimate their ethnicity using the 

remaining 95% of samples as the new reference panel. We repeat this process 20 times, each time 

removing a different 5% of the panel and estimating their genetic ethnicities using the remaining 95%.  

We then look at the average predicted ethnicity for samples from each region in the reference set using 

the results of these cross-validation experiments. Figure 2.3 shows the results of this experiment as box 

plots. 



 
 
 
 
 
 

 

Figure 2.3: 20-fold cross-validation analysis of the V3 reference panel. Here we plot the results of an experiment in which 5% of 

samples are removed from the reference panel, and their ethnicity is estimated using the remaining (95%) panel samples. Each 

boxplot represents the distribution of estimated ethnicity for all samples from a given region (75%, 50%, and 25% percentiles of 

estimated ethnicity). For the majority of samples in each region, we predict on average 78.9% of the genetic ethnicity to be from the 

correct region. And for the most part, the other 21.1% comes from nearby regions. However, there are exceptions. In particular, our 

average prediction accuracy for samples for Nigeria, Spain, and Basque are not quite as high. There are many factors affecting the 

accuracy of these numbers, most importantly the number of reference samples in the panel for each region and the genetic 

distinctness of each region. 

 

The purpose of this analysis is twofold. First, reference panel samples with extremely poor performance in 

the cross-validation analysis are removed, as they may poorly represent their ethnic group of origin. 

Second, the cross-validation experiments allow us to demonstrate our ability to accurately estimate the 



 
 
 
 
 
 
ethnicities of our reference panel samples using our ethnicity estimation method (see section 3) and thus 

help us redefine population boundaries. For example, we may merge two populations if performance in 

the cross-validation experiment is poor in each group but is found to be better in a merged group. 

After performing several rounds of reference panel refinement based on cross-validation experiments, we 

settled on dividing our latest reference panel into 43 global regions. These regions are described in 

further detail below. 

2.5 Updated Reference Panel 

The updated AncestryDNA ethnicity estimation reference panel contains 16,638 samples carefully 

selected as described to represent 43 overlapping global regions (Table 2.1), each with a unique genetic 

profile. As a comparison, our previous panel of 3,000 samples represented only 26 global regions. 

Region Number of samples 

Northern Africa 41 

Africa South-Central Hunter-Gatherers 34 

Benin & Togo 224 

Cameroon, Congo & Southern Bantu Peoples 579 

Ivory Coast & Ghana 124 

Eastern Africa 82 

Mali 169 

Nigeria 111 

Senegal 31 

Native American—North, Central, South 146 

Native American—Andean 63 

Central & Northern Asia 186 

Southern Asia 600 

Balochistan 53 

Burusho 23 



 
 
 
 
 
 

China 620 

Southeast Asia–Dai (Thai) 80 

Western & Central India 65 

Japan 592 

Korea & Northern China 
 

261 

Philippines 538 

Southeast Asia–Vietnam 159 

England, Wales & Northwestern Europe 
 

1519 

Baltic States 194 

Basque 22 

Ireland & Scotland 500 

European Jewish 200 

France 1407 

Germanic Europe 2072 

Greece & the Balkans 242 

Italy 1000 

Norway 367 

Portugal 404 

Sardinia 30 

Eastern Europe & Russia 1959 

Spain 270 

Sweden 372 

Finland 361 

Middle East 271 

Iran / Persia 459 

Turkey & the Caucasus 101 

Melanesia 49 



 
 
 
 
 
 

Polynesia 58 

Total 16,638 

 

Table 2.1: The Final AncestryDNA V3 Ethnicity Reference Panel 

We discuss more detailed tests of the performance of the ethnicity panel in Section 4. For details of the 

method AncestryDNA uses for genetic ethnicity estimation, see Section 3. 

3.  AncestryDNA Ethnicity Estimation 

3.1 Introduction 

After establishing and validating the reference panel, the next step is to estimate a customer’s ethnicity by 

comparing over 300,000 single nucleotide polymorphisms (SNPs) from his or her DNA to those of the 

reference panel. We assume that an individual’s DNA is a mixture of DNA from the 43 populations 

represented in the reference panel. This is illustrated in Figure 3.1, where, because of recombination, a 

customer inherits long stretches of DNA from his or her four grandparents who, in this example, come 

from four “single source” reference populations.  

Because DNA is passed down from one generation to the next in long segments, it is likely that the DNA 

at two nearby SNPs, or positions, in the genome was inherited from the same person and so comes from 

the same population (for more details on DNA inheritance see our DNA Matching White Paper 

http://dna.ancestry.com/resource/whitePaper/AncestryDNA-Matching-White-Paper).  This means we can 

get more accurate results by looking at multiple nearby SNPs together as a group, or haplotype, instead 

of looking at each SNP in isolation. Our updated method takes advantage of this to greatly improve our 

estimates.  

We estimate a customer's genetic ethnicity by assuming that each segment of their genome comes from 

one of the 43 populations in the reference panel. We divide the customer’s genome into 1,001 windows. 

We assume that each window is small enough that each of the two parental haplotypes present in the 

window came from exactly one population. We then combine information from all the windows to estimate 

what overall portion of the customer’s genome came from each of the populations in the reference panel 

using a hidden Markov model (HMM).  



 
 
 
 
 
 
As you can see in Figure 3.1, each window does not have to have a single ethnicity associated with it. 

Instead, it can have one from one parent and one from the other. For example, the first window has two 

different ethnicities represented by the colors green and red. Any ethnicity estimator that uses the 

technology AncestryDNA does to read DNA has to account for the possibility of two separate ethnicities in 

each window. In other words, it has to employ a model that looks at the DNA and can identify the DNA as 

a mix of red and green as opposed to just red or just green (or any of the other possible combinations).  

 

Figure 3.1:  Inheritance of DNA from different populations.  On the left, we present a three-generation genetic family tree.  For 

each individual, we show two vertical bars representing the two copies of a single chromosome present in each individual. These 

bars are colored by the reference population from which they inherited their DNA. Each of the four grandparents (solid bars, top row) 

has inherited 100% of their DNA from a single population that is different from the other three. The DNA is passed forward to the 

parents and finally to the customer, who, through the process of recombination and assortment, ends up inheriting a shuffled set of 

chromosomes from each parent.  The colors show that the customer’s DNA is a mixture of the DNA inherited from their four 

grandparents, with long stretches inherited from the same grandparent. On the right, we show that to obtain a customer’s ethnicity 

estimate, we divide the customer’s genome into small windows (represented by black horizontal lines). For each window we assign 

a single population to the DNA within that window inherited from each parent, one population for each parental haplotype. Each 

window gets a population assignment based on how well it matches genomes in the reference panel.  



 
 
 
 
 
 
3.2 Principles of a Hidden Markov Model 

When we analyze DNA data, we do not know the population it comes from ahead of time. Instead, we 

observe a pair of alleles (often called a genotype) at each position (or SNP) in the DNA. One allele was 

inherited from Mom and the other from Dad. 

Because the probability of a specific pair of alleles appearing at a certain position in the DNA varies for 

each of our 43 regions, we can use that information to tell us which region a stretch of DNA most likely 

came from. For example, if AA at a particular position is more common in people from Spain, someone 

with AA at that location might have a higher chance of having Spanish ancestry. 

It is important to keep in mind that an AA at this particular position just makes it more likely the DNA 

comes from Spain. Plenty of people from Portugal, France, or even Korea might have AA at this position 

as well. The ethnicity estimate uses the probability at all positions within a window to determine where the 

DNA most likely came from. We infer the genetic ethnicity of each position using a statistical tool called a 

hidden Markov model (HMM) [Rabiner, 1989]. 

A customer’s genome is a sequence of nucleotides—As, Ts, Cs, and Gs—strung together to make a 

chain. The precise nucleotide at any position depends on what population that segment of DNA has come 

from, but that information is not known. In determining ethnicity, an HMM statistically determines the most 

likely ancestral reference population from which a segment of DNA originates, its most likely “hidden 

state,” based on a sequence of observations (in this case, the genotypes, or particular combination of 

SNPs).  

We divide the customer’s genome into 1,001 stretches of DNA called windows and try to determine the 

hidden state for each of them. Each window has two stretches of DNA, one from Mom and one from Dad, 

and they can either both be from the same ethnicity or from different ones. So the hidden state in this 

case is the ethnicity of each segment of DNA in the window. 

HMMs have two components, called emission and transition probabilities. Emission probabilities tell us 

how likely it is that a stretch of DNA came from each of the 43 populations based on the observed 

sequence. The transition probability indicates how likely it is that there will be a change in the population 

identification from one window to the next. In other words, if in the DNA in the current window is from only 

Sweden, how likely is the DNA in the next window to also be from only Sweden? 



 
 
 
 
 
 
This is a sensible model for human DNA because human genomes are organized linearly along 

chromosomes. Additionally, the nature of inheritance means that whole segments of the genome and, 

therefore, many consecutive nucleotides that Ancestry looks at along a chromosome, will have the same 

DNA ancestry.  

3.3 Inferring Ethnicity Estimates from a Genome-Wide HMM 

At AncestryDNA, we use microarrays to obtain DNA data from customer samples. We look at over 

700,000 individual locations on the DNA (SNPs) and determine the nucleotides at each position. For 

example, we may see an A and a T at position 1, a G and a G at position 2, and so on. We use around 

300,000 of these SNPs in the ethnicity estimate. 

In working with data from arrays, it is important to remember that people have two copies of each of the 

22 chromosomes that AncestryDNA reports data back on. One set of chromosomes comes from Mom 

and the other from Dad. This means there are two results for each position AncestryDNA analyzes, and 

those results must be interpreted to assign which DNA came from which set of chromosomes (this 

process is called phasing). AncestryDNA must consider what possible combinations of ethnicities might 

look like. For example, if one customer has a section of their DNA that came from Swedish ancestors 

from Mom’s side of the family and Japanese ancestors on Dad’s, the algorithm must be able to 

distinguish this from a second customer with Swedish and Nigerian ancestors. 

We create a genome-wide HMM (illustrated in Figure 3.2) where each possible ethnicity combination (or 

hidden state) is represented by a pair of populations in a window of the genome, and changes between 

windows that are next to each other are unlikely to change the state. In other words, if in the preceding 

window the DNA from Mom and the DNA from Dad both came from Nigeria, then the next window is more 

likely to be the same.  

We also account for the probability of changing population assignments between adjacent windows 

(transition probability). Essentially this means that if you are, for example, Sweden/Sweden in one 

window, there will need to be very strong evidence from the observed DNA data that the neighboring 

window has a different population assignment. By applying these probabilities to the whole genome, we 

can obtain a sequence of population assignments along a customer's genome. 



 
 
 
 
 
 

 

Figure 3.2: An illustration of the genome-wide HMM for three populations. The genome is divided into W windows, and we 

model transitions from a given window w, to the adjacent window w+1. Here, the possible (hidden) states for a window are 

represented by colored squares, with different colors representing different population assignments. Boxes with two 

different colors represent mixed ancestry in the window. Arrows between boxes represent transitions, and each box/state 

emits the customer’s observed genotype with a probability that was pre-computed in the previous step. Transitions that do 

not result in a change in state/colors between two windows are more likely than those that do. Only transitions that result 

in at most one color/population change are allowed. 

3.4 Transition Probabilities 

Transition probabilities are really just the odds that an ethnicity will change from one window to the next. 

AncestryDNA only considers a transition to the window that is immediately adjacent, so the only things 

that determine the transition probability are the state at the current window and the state it transits to at 

the next window. This “memoryless” property is a key feature of an HMM.  

We do not allow transitions between states where both populations are different because from a 

biological perspective, it is very unlikely that there would be a change in the same window in both the set 

of DNA from Mom and the set of DNA from Dad. This greatly reduces the number of possible transitions 

and the complexity of the HMM.  

The exception to this rule is when there is a transition from the end of one chromosome to the beginning 

of the next. In these cases, changes are much more likely than they are within the same chromosome 

because the DNA in different chromosomes are not connected. This is accomplished by forcing a silent 

state between chromosomes, which makes sense because there is no connection between two 

chromosomes. The transition probability from a silent state to a given pair of population assignments is 

simply given by the genome-wide probability of any position of the genome having that population 

assignment. In other words, there is no information from a previous window to affect the interpretation of 

a window that immediately follows a silent state. We estimate this value as part of the HMM. Initially, this 



 
 
 
 
 
 
value is set to be the same for every population pair, and is learned during the iterations of the HMM as 

each sample is processed. 

3.5 Emission Probabilities 

Determining how likely the DNA in a window came from a population (the emission probability) is a 

complicated process and is described in more detail in the appendix.  

Briefly, our approach includes the following steps:  

I. Define the windows. DNA is inherited in long stretches of contiguous DNA within chromosomes 

referred to as haplotypes. Working with these blocks of DNA can be more informative than 

working with individual positions within the DNA, and this represents one of the major 

improvements over the previous algorithm employed by AncestryDNA. We do not know the exact 

haplotype boundaries, which differ between people, but we can achieve a good approximation by 

dividing the genome into 1,001 small windows. Each window covers one section of a single 

chromosome and is small enough (e.g., 3-10 centimorgans) that both the maternal and paternal 

haplotype, the DNA from Mom and the DNA from Dad, in a given window are likely to each come 

from a single, though not necessarily the same, population.  

II. Create the haplotype models. Next we need to compare a customer’s haplotype within a 

window to those in our reference panel to assess how likely it is to have come from each 

population. For example, how likely are both segments of DNA in a haplotype to come from 

Sweden vs. one from Sweden and one from France, and so on through all of the possibilities. To 

do this we first need to create a haplotype model. We do this by constructing a BEAGLE 

[Browning, 2007] haplotype cluster model for each window using hundreds of thousands of 

haplotypes (see Matching white paper for more on this). Since we start with unphased customer 

genotype data, data in which maternal and paternal haplotypes are not distinguished, the model 

accounts for all possible haplotypes given a set of genotypes, and each state in a haplotype 

cluster model represents a cluster of similar haplotypes.  

III. Annotate the reference panel. We want to identify the haplotype clusters in our model that are 

associated with each population in the reference panel. Because we are confident in the 

geographic origin of members of the reference panel, we are able to calculate the probability that 

a haplotype from a given population is represented by a particular haplotype cluster. These 

values are used to compute the emission probabilities in the genome-wide HMM that assigns 

ethnicity. 

IV. Compare the test sample to the reference panel to assign population labels using an HMM. 

To do this, we compute the likelihood that the pair of haplotypes present in each window of a test 



 
 
 
 
 
 

sample come from the populations in the reference panel. For each window, both haplotypes may 

come from the same population or from different populations, and the resulting emission 

probabilities are calculated for all possible combinations.  

HMMs are used in a number of existing approaches for estimating ancestral proportions [Maples 2013].  

The key part of our method is step III, where we use rich haplotype models in each window, annotated 

with population labels from the haplotypes in our reference panel, to assign a likelihood to all population 

labels to the haplotypes in our test sample. It is worth noting that our method lends itself to high-

throughput ethnicity estimation, as steps (I) through (III) above–learning the haplotype models from a 

large training set and then annotating them with the reference panel populations–need only be carried out 

once.  

3.6 HMM Model 

We use HMMs because they can effectively consider all possible ethnicity assignments to all windows in 

the genome and do so efficiently. AncestryDNA runs our HMM on a customer’s DNA to find the most 

likely sequence of ethnicities along the DNA. In more technical terms, the algorithm takes the “Viterbi” 

path, the sequence of hidden states that returns the highest probability. The final ethnicity esimates  

customers receive are calculated by counting the proportion of the Viterbi path (weighted by 

recombination distance) that are assigned to a particular population in the reference panel. For example, 

a customer with the sequence Sweden/Sweden, Sweden/Sweden, Sweden/Sweden, France/Sweden, 

France/Sweden (and an incredibly small genome!) would be 20% France and 80% Sweden, given the 

five windows have identical size. 

Because these proportions are estimates, we need a way to determine the confidence surrounding these 

values. To do this, we randomly sample 1,000 non-Viterbi paths, or paths that might not be the most likely 

(but are still likely). In each of the 1,000 runs, a given window is assigned a population pair with a 

probability that depends on the assignment, within the same run, of the previous window and the 

predetermined transition and emission probabilities. These 1,000 values are used to provide a confidence 

range on the reported Viterbi estimate. 

 



 
 
 
 
 
 

Figure 4.6: Illustration of the Viterbi path, represented by arrows, through the HMM that determines an ethnicity estimate. 

` 

Figure 4.7: Illustration of our stochastic path-sampling process. 

4. Assessing Ethnicity Estimation Performance 

After developing and optimizing both the estimation process and the reference panel, the final 
step is to determine how well they perform together at assigning ethnicity.  Basically, we see 
how close our process gets to the right answer through rigorous testing using a wide variety of 
test cases with known ethnicity. 



 
 
 
 
 
 
4.1 Cross-Validation 

We evaluate the performance of the ethnicity estimation process by running it on two different 
test cases where we know what the correct answer should be: single-origin individuals from the 
reference panel and “synthetic individuals” with mixed ethnicities. We gauge its effectiveness by 
seeing how close we get to the true ethnicity. 
 
Single-origin individuals from the reference panel:  By definition the individuals in our reference 
panel each have 100% of a single ethnicity. We evaluate our process by running 20-fold cross-
validation experiments using the single-origin individuals from our reference panel. As described 
in section 2.4, we take 5% of the individuals from each of the 43 regions within the reference 
panel and use the remaining 95% of the 43 regions as the reference panel. We repeat this 
procedure 20 times so each individual in the reference panel has been tested. 
 
For example, if we had 100 people in each reference panel group, we would take 5 from each 
and run the algorithm on them using the remaining 4,085 individuals as the reference group. 
Then a different 5 would be taken from each group and the process repeated.  
 
As illustrated in Figure 4.1, our updated ethnicity estimation process, or algorithm, performs 
significantly better than our previous process for nine European regions. Since we are analyzing 
single-origin people, a perfect algorithm would report back 100% for all of these cases. While 
not quite perfect, in each case, the updated algorithm is closer to 100% compared to the 
previous method. The trend is similar for the majority of the other regions (data not shown). 
 

 

 
Figure 4.1: Comparison of two ethnicity estimation algorithms on single-origin 
individuals from nine European regions. Here is a direct comparison between our 
previous ethnicity estimation algorithm (in blue) and our updated version (in orange). 
The closer the algorithm comes to 100%, the better it is at estimating ethnicity. For these 
nine cases, the updated algorithm outperforms the previous one. We mapped the 43 
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regions in the updated ethnicity estimate to the 26 regions in the previous ethnicity 
estimate to allow a direct comparison. 
 
 
Overall we observe that the updated process correctly assigns an average of 78.9% of the 
genetic ethnicity to the correct region for single-origin individuals from our reference panel  
(Figure 2.3). We predicted nearly 100% of the genetic ethnicity from the correct region for the 
following groups: 
 

● European Jewish 
● Japan 
● Western & Central India 
● Cameroon, Congo & Southern Bantu Peoples 
● Polynesia 
● Finland 
● Philippines 
● Africa South-Central Hunter-Gatherers 

 
For some regions, such as Nigeria, Spain, and Basque, the numbers are not as high, with 
average assignment of 28%, 46%, and 54% to the correct region, respectively. However, even if 
the prediction accuracies fall short of 100% for some regions, the remaining ethnicity is still 
assigned to nearby regions. For example, individuals from Spain might get some assignments 
to France and Portugal, while individuals from Norway and Sweden might get some level of 
assignment to each other (see Figure 4.2).  
 
 
 



 
 
 
 
 
 

 

 

Figure 4.2: Average estimated ethnicities for single-origin individuals from each population. In this graph, each row 
represents single-origin individuals from the population listed. Each column represents each of the possible 43 ethnicities 
that the single-origin individual might be assigned to. The graph is set up such that the matching individual and his or her 
ethnicity are aligned along the diagonal line. If the algorithm worked perfectly, there would be only white boxes along the 
diagonal—white represents 100% origin from that population. Any boxes that are not on the diagonal represent 
misassigned populations. This graph also shows that certain ethnicities can be confounded by other ethnicities. For 
example, individuals with 100% Northern African ethnicity on average get assigned 10% Middle East ethnicity. Individuals 
with 100% Spanish ethnicity can be assigned to France and Portugal as well.  
 
Synthetic individuals with mixed ethnicities: We also evaluated the accuracy of ethnicity 
estimates for “synthetic” individuals of mixed ethnicity origins. These test cases are simulations 
we construct with known mixtures of ethnicities. Each synthetically admixed individual can have 



 
 
 
 
 
 
as few as 2 or as many as 20 ethnicity regions, with various proportions. Since the true ethnicity 
proportions are known, we can calculate precision and recall for each ethnicity region. Precision 
and recall are two important factors in evaluating our estimation process.  
 
Precision can be thought of as how much of the reported ethnicity is true. For example, if our 
process predicts an individual has 40% Northern Africa, but only 30% really is, then the process 
has a precision of 0.75 for Northern Africa ethnicity. Mathematically, precision is expressed as 
the amount of correctly identified ethnicity divided by the estimated value for that region.  
 
Recall can be thought of as how much of the true ethnicity is called by the process. Keeping 
with our Northern Africa ethnicity, imagine that an individual has 50% Northern Africa ancestry, 
but the algorithm predicts 40%. In this case, the process has a recall of 0.8 for Northern Africa 
ethnicity.  

Table 4.1 : Precision/Recall for each region calculated from ethnicity estimates of synthetic individuals 

with mixed ethnicities.  

Region Precision Recall 

Northern Africa 0.90 0.67 

Africa South-Central Hunter-Gatherers 0.91 0.98 

Benin & Togo 0.73 0.89 

Cameroon, Congo & Southern Bantu Peoples 0.87 0.99 

Ivory Coast & Ghana 0.79 0.61 

Eastern Africa 0.97 0.71 

Mali 0.82 0.93 

Nigeria 0.81 0.26 

Senegal 0.89 0.53 



 
 
 
 
 
 

European Jewish 0.93 0.97 

Finland 0.84 0.97 

Sweden 0.55 0.64 

Norway 0.62 0.80 

Baltic States 0.38 0.90 

Eastern Europe & Russia 0.86 0.79 

Greece & Balkans 0.54 0.53 

Italy 0.82 0.68 

Sardinia 0.63 0.77 

France 0.76 0.63 

Germanic Europe 0.79 0.59 

Basque 0.69 0.55 

Spain 0.65 0.30 

Portugal 0.86 0.44 

England, Wales & Northwestern Europe 0.58 0.82 

Ireland & Scotland 0.55 0.91 

Central & Northern Asia 0.98 0.61 



 
 
 
 
 
 

Southern Asia 0.95 0.88 

Balochistan 0.85 0.73 

Burusho 0.91 0.57 

China 0.93 0.88 

Southeast Asia—Dai (Thai) 0.69 0.86 

Western & Central India 0.60 0.99 

Japan 0.92 0.99 

Korea & Northern China 0.71 0.91 

Philippines 0.99 0.96 

Melanesia 0.98 0.98 

Polynesia 0.98 0.99 

Southeast Asia—Vietnam 0.87 0.76 

Native American—North, Central, South 0.98 0.96 

Native American—Andean 0.96 0.95 

Middle East 0.87 0.72 

Turkey & the Caucasus 0.29 0.76 

Iran/Persia 0.89 0.67 

 



 
 
 
 
 
 
We found that most ethnicity regions have precision and recall that are both higher than 60%, 
especially several regions that perform extremely well: 
 

● Philippines 
● Polynesia 
● Japan 
● Native American-Andean 
● Native American-North, Central, South 
● European Jewish 
● Africa South-Central Hunter-Gatherers 
● Cameroon, Congo & Southern Bantu Peoples 

 
Some regions, such as Nigeria, Spain, and Portugal, have relatively lower recall, 26%, 30%, 
and 44% respectively, while some regions, such as Turkey & the Caucasus and Baltic States, 
have relatively lower precision, 29% and 38% respectively. For regions with low recall, it's 
mostly because part of the ethnicity from these regions are assigned to nearby regions. Hence 
underestimation and the low recall. For regions with low precision, it's mostly likely part of the 
nearby regions are assigned there. Hence overestimation and low precision 
   

4.2 Region Assessment 

Analyzing samples from individuals whose known ancestors are from only one of our ethnicity regions 

also allows us to measure how much overlap exists between regions and help our customers interpret 

their results. To find these individuals, we use customer-created family trees and look for people who 

have all of their ancestors from the same country. Ideally, we’d use people with all of their grandparents 

from the same country, but due to low numbers for some countries we sometimes use parents or even 

the customer’s birth location.  

Customers with deep trees all within the same country are expected to have high assignments to the 

ethnicity associated with that country, and this is what we generally find. For example, Figure 4.3A shows 

the average ethnicity assignments for 1,911 customers with all four grandparents born in Germany. As 

you can see, while most of their ethnicity is from Germany, other regions do appear in small but 

significant amounts. These analyses help ensure that ethnicity estimates for people from a region agree 

with expectations.  

However, not everyone receives an estimate that follows the average for each country, and it’s often 

useful to look at individual results to understand why. Figure 4.3B shows the average ethnicity estimates 

for people with all four grandparents from Japan. Interestingly, a few percent of the estimate is for both 



 
 
 
 
 
 
England, Wales and Northwestern Europe and Ireland and Scotland. These few percent are not evenly 

spread among the people in this analysis. Instead, there are a few individuals whose estimate results are 

mostly European, suggesting that they are descended from European immigrants to Japan.  

 

 



 
 
 
 
 
 

 

Figure 4.3 Average ethnicity  assignments based on grandparental birth location.  Average ethnicity assignments for 

customers with all four grandparents born in the same country. (A) Germany, (B) Japan  

We also use the maps like the one shown in Figure 4.4 to ensure that ethnicity estimates make sense 

geographically. The geographic distribution of ethnicity estimates within a country can often help make 



 
 
 
 
 
 
sense of otherwise surprising results. For example, as you can see in Figure 4.4, there is a high level of 

Ireland and Scotland ancestry in the Brittany region of France. This makes sense because the Ireland 

and Scotland assignment is the result of Celtic peoples who lived both there and in Brittany. In fact, the 

Celtic language Breton is traditionally spoken there. Higher Ireland and Scotland estimates in Wales also 

likely reflect the history of Celtic migration in that region. 

 

 

Figure 4.4 Map of average Ireland and Scotland estimates. High estimates outside of Ireland in Scotland, Wales, and Brittany (as 

shown in light blue and green) likely reflect historic migrations of Celtic people.  

These analyses help us understand the genetic diversity of the regions and allow us to better 

communicate these results to our customers (e.g., even if all of a customer’s ancestors are German, the 

customer can expect to have some amount of genetic ethnicity from adjacent regions). These analyses 

also aid us in prioritizing future developments for further ethnicity estimation updates. 



 
 
 
 
 
 
 

4.3 Regional Polygon Construction 

Because we use 43 global populations in our reference panel, we divide the globe into 43 overlapping 

geographic regions/groups. Each region represents a population with a unique genetic profile. Where 

possible, we use the known geographic locations of our samples to guide where the regional boundaries 

should be. Figure 4.5 shows an example of the information used to define regional polygons. 

 

 



 
 
 
 
 
 

 

Figure 4.5: Using geographical sample locations to draw regional polygons. Panel A shows the distribution of the England, 

Wales & Northwestern Europe ethnicity predicted for a set of samples with geographic information. Samples are assigned to grids of 

0.5 degrees longitude by 0.5 degrees latitude based on the average birth location of their ancestors’ grandparents. The color of 

each grid squarepoint on the map represents the average England, Wales and Northwestern Europe ethnicity of samples from each 

grid. Panel B shows the maps after filling in missing regions and smoothing the results. The information is processed with kernel 

smoothing to create the outlines representing the ancestry regions shown to customers, as shown in panel C.  

In Figure 4.5A, we show the amount of ethnicity assigned to the England, Wales and Northwestern 

Europe region for a subset of reference samples with known geographic locations. Figure 4.5B shows the 

results after imputing values to fill in gaps and applying smoothing methods to make the plot less spotty. It 

is clear from the plot that there is a gradient of ethnicity in this region that is centered in England that 

quickly tapers off in surrounding regions. For example, the next level of concentration, represented by 

green in the image, is in areas surrounding England, such as Wales, France, and Belgium. The ethnicity 

gradient continues to diminish as represented in purple with the borders reaching as far away as Italy, 

Switzerland, Sweden, and Ireland. Where possible, this information is applied directly to the drawing of 

regional boundaries (Figure 4.5C) that appear on the maps presented as part of the AncestryDNA 

product experience. 

These polygons appear as nested regions with increasing depth of shading. The redish brown regions 

represent the regions with the highest average assignments and are the most likely physical locations of 

a customer’s ancestors. The blue/purple regions have lower average levels and represent other possible 

locations of origin that are less likely. Each set of polygons is accompanied by a detailed account of the 

history of the region. 



 
 
 
 
 
 
The map below shows polygons for all populatioins based on the second tier of the polygons, constructed 

as described above. 

 

4.4 Reporting uncertainty of estimated values  

Ethnicity estimates are not an exact science. The percentage AncestryDNA reports to a customer is the 

most likely percentage within a range of percentages. In this section, we discuss how we calculate this 

range. It is important to keep in mind that here at AncestryDNA we continue to build upon our previous 

work to offer ever more accurate results to our customers. 

So, for example, we might report someone as 40% England, Wales and Northwestern Europe with a 

confidence range of 30-60%. This means that they are most likely 40% England, Wales and Northwestern 

Europe but they could be anywhere between 30% and 60% England, Wales and Northwestern Europe.  

As discussed in section 3, we run a genome-wide Viterbi estimate on a customer’s DNA sample and 

report that back as the customer’s most likely ethnicity estimate. From this we are able to get transition 

probabilities that we can then use to generate new ethnicitiy estimates that while likely, are not the most 

likely. The range is based on 1,000 of these sampled paths.  For example, if a window has an 80% 



 
 
 
 
 
 
chance of being from England and Wales, then it has a 20% chance of being from some other region. 

The confidence interval captures these sorts of lower chances across a customer’s DNA.   

We devised a way, using the 1,000 sampled estimates, to estimate the confidence interval surrounding 

the Viterbi estimate reported to the customer.  Our objective when defining this approach was to 

maximize the probability that the reported range contains the true ancestry proportion (recall), while also 

maximizing precision by maintaining a fairly narrow range.  

We take the mean and standard deviation of the 1,000 sampled estimates and use these to calculate a 

confidence range surrounding the Viterbi estimate. When calculating this range, we take into account the 

value of the Viterbi estimate and the population for which we are calculating the range.  

We can test our process for calculating the range using the same synthetic admixed individuals used for 

the cross-validation studies to determine how often it correctly gets the known ethnicity percentage within 

the range. In other words, how often does the range overlap the known ethnicity. We find that the 

algorithm performs very well for some populations and less well for others. Since we know the true 

ethnicity, we can incorporate correction factors specific for each population to maximize the probability 

that the true ethnicity falls within the range.  

5. Future Ethnicity Estimation Refinement 

While AncestryDNA is extremely proud of the enhancements in this updated release of its genetic 

ethnicity estimation process, we will continue to improve the product over time. The availability of new 

data, the development of new methodologies, and the discovery of new information relating to patterns of 

human genetic variation will all have the potential to lead to future improvements. 



 
 
 
 
 
 

 

Figure 5.1: Ethnicity Improvement Cycle. 

Each of the steps above represents a critical part of our ethnicity estimation development. Currently, we 

are working to further expand our global reference panel for future ethnicity updates. We have already 

begun genotyping and analyzing samples for a future update which we expect will provide even better 

estimates. We have also begun a new diversity initiative to gather DNA samples from underrepresented 

regions around the world in order to expand the number of regions we can report back to customers.  

Simultaneously, we are also working to improve our algorithms for ethnicity estimation. Future ethnicity 

updates may include an improvement to our statistical methodology that will more fully leverage 

information in genetic data to reveal even more information about population history. Along the way, we 

always perform thorough testing and analyses like those described above. These tests inform the focus of 

our improvements and help refine our methods. 

Each new release of genetic ethnicity estimation represents a step forward in our ability to give our 

customers a complete description of their genetic ancestry and inform them about their ancient genetic 

origins. We hope that, like the entire team at AncestryDNA, our customers will look forward to these future 

developments. 
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