
Ethnicity Estimate White Paper

© AncestryDNA 2013



Ethnicity Estimate White Paper
Last updated October 30, 2013

Catherine A. Ball, Mathew J. Barber, Jake K. Byrnes, Josh Callaway, Kenneth G. 
Chahine, Ross E. Curtis, Kenneth Freestone, Julie M. Granka, Natalie M. Myres, 
Keith Noto, Yong Wang, Scott R. Woodward (in alphabetical order)

1. Introduction

The AncestryDNA service offers two primary pieces of information to customers to 
aid genealogical discovery. The first, known in the population genetics literature as 
identity-by-descent (IBD) analysis, identifies pairs of customers with long shared 
genetic segments suggestive of recent common ancestry. Linking a pair of customers 
with recent common ancestry can allow them to exchange information regarding their 
family trees.

The second piece of information, which is the subject of this paper, is called genetic 
ethnicity or genetic ancestry. Here, we provide our customers with an estimate of 
the ancient historical origins of their DNA. While this information is less relevant for 
genealogical research relating to the last five to ten generations, it may reveal intriguing 
clues about the distant history of one’s ancestors. Our customers have overwhelmingly 
expressed interest in receiving the results of this analysis.

AncestryDNA has employed a team of highly trained scientists with backgrounds 
in population genetics, statistics, machine learning, and computational biology to 
develop a fast, sophisticated, and accurate method to estimate genetic ethnicity for 
our customers. In this document, we describe the technology we use to capture a 
customer’s genetic data and the information this technology provides, the reference 
panel to which we compare each customer sample, the inference method we apply in 
order to estimate genetic ethnicity, and finally the extensive testing regime we have 
developed and employed to assess the quality of our estimates. Specifically, this white 
paper addresses our updated ethnicity estimation process, which includes refinements 
to the reference panel and a calculation of statistical uncertainty in the ethnicity 
estimates.



2. Data

Illumina OmniExpress Ascertainment

At AncestryDNA, we genotype samples on the Illumina OmniExpress platform.  This 
platform is designed to assay a majority of the genome while genotyping only 730,525 
SNPs. The SNPs on this array are carefully selected to capture the majority of common 
genetic variation in European and other worldwide populations. Below, we describe the 
process by which SNPs are chosen for the array.

First, a comprehensive set of data is assembled to determine the SNPs to include on 
the array. Three sets of populations genotyped by the Human HapMap Consortium, 
an international effort to catalog human genetic variation (International HapMap 
Consortium 2005; International HapMap Consortium et al. 2007), are examined 
separately: 1) the Centre d’Etude du Polymorphisme Humain (CEPH) and Utah 
Residents with European ancestry (CEU), 2) Han Chinese in Beijing, China and 
Japanese in Tokyo, Japan (CHB + JPT), and the Yoruba from Idaban, 3) Nigeria in 
Western Africa (YRI). This dataset reveals millions of candidate SNPs for the array.

Figure 2.1: Percent Variation Captured at r² > 0.80. Proportion of SNP variation captured at r² > 
0.80 in final set of OmniExpress SNPs. SNPs are separated into two classes: common variants (frequency 
> 5% in the 1000 Genomes project samples) are presented in dark blue, and rare variants (frequency < 1% 
in the 1000 Genomes project samples) are presented in light blue. As expected, the OmniExpress better tags 
common variation (Source: http://res.illumina.com/documents/products/datasheets/datasheet_human_
omni_express.pdf)

For additional statistics regarding SNPs on the Illumina OmniExpress Platform, see http://res.illumina.
com/documents/products/datasheets/datasheet_human_omni_express.pdf and http://res.illumina.com/
documents/products/datasheets/datasheet_omni_whole-genome_arrays.pdf



From this large pool of candidates, SNPs are chosen based on allele frequency and 
linkage disequilibrium (LD). First, the OmniExpress platform is designed to capture 
only common genetic variation — that is, SNPs with allele frequency > 5%. All rare 
candidate SNPs are removed from consideration. Based on LD, or the correlation 
between variation at neighboring SNPs, a final set of array SNPs is chosen to optimally 
‘tag’ all neighboring variation. While all populations are examined, the majority of the 
SNPs included on the array are designed to tag variation in European populations. Note 
that while variation on the X and Y chromosomes is effectively tagged, 706,393 of the 
730,525 total SNPs are exclusively on the autosomes.

To determine how well the selected SNPs capture variability in the genome in each test 
population, the proportion of SNP variation captured by the final set of OmniExpress 
SNPs at r² > 0.80 is examined. Due to the ascertainment strategy as well as differing 
population histories and levels of diversity, performance in each population is slightly 
different (Fig. 2.1). The array currently performs best in European populations (as 
expected), and captures the least amount of variation in African populations, which are 
typically more diverse. At AncestryDNA, we are working to account for these differences 
in our analyses and to find other ways to better capture variation in other populations.

Figure 2.2: DNA Extraction and Genotyping. The images presented here are described in the 
following document about the Infinium HD Assay: http://supportres.illumina.com/documents/
myillumina/67f59f89-51ee-44d6-b1bb-a53dcb5bd01e/infinium_hd_ultra_user_guide_11328087_revb.pdf.

Genotyping

Genotyping, the process of using the OmniExpress array to assay a customer’s genetic data from DNA 



that has been purified from a saliva sample, is roughly outlined in Figure 2.2. Further details of this 
process are described at the Illumina website (http://support.illumina.com).

Performance

Both Illumina and AncestryDNA measure a number of statistics to assess the accuracy 
of the array and genotyping protocol. For studies performed by Illumina, see http://res.
illumina.com/documents/products/datasheets/datasheet_human_omni_express.pdf.

The table below (Table 2.1) shows performance metrics calculated by the scientists 
at AncestryDNA. First, we measure how often the array returns a genotype for each 
SNP, or a per-SNP call rate. Taking the average of the per-SNP call rate across 706,393 
autosomal SNPs on the array, we find that SNPs successfully return data approximately 
99% of the time. To assess the data quality and reproducibility, we assemble 137 
pairs of samples which have been genotyped twice on the array. The average per-SNP 
concordance of genotypes between the first and second runs is over 99.9%.

Though there is a slight difference between data performance estimates produced 
by Illumina and by AncestryDNA, the results suggest that the vast majority of sites 
return genotypes and that the genotyping data analyzed in the AncestryDNA service is 
reproducible.

Table 2.1: Data Performance from AncestryDNA

Statistic Value Description

Autosomal per SNP call Rate 98.7% The average genotyping rate for each SNP out of the 
706,393 we use for analysis.

Autosomal per SNP Concordance > 99.9% The average rate of agreement between SNP genotypes 
from 137 pairs of duplicate runs of the same sample.

SNP Quality Control

We further prune the set of SNPs from the Illumina OmniExpress platform for 
downstream analyses. First, we remove SNPs from our analysis that have a consistently 
low call rate. We also remove SNPs with low minor allele frequencies (MAF): SNPs 
with MAF < 0.02 in each reference population are removed (see next section). We also 
remove SNPs that do not follow Hardy-Weinberg Equilibrium (see Section 4) with a 
p-value < 1x10-5. Finally, we later remove SNPs in linkage disequilibrium (LD) for our 
ethnicity estimation procedure (for details, see Section 4).



Sample Quality Control

Finally, at AncestryDNA we perform extensive quality-control (QC) on each customer 
sample processed, above and beyond the quality control done by our genotyping 
laboratory. This process, outlined in Figure 2.3 and in the list below, involves checking 
the percentage of markers successfully genotyped (call rate), comparing the genetically-
inferred gender of each sample to the gender reported by the customer during kit 
activation, confirming that each sample is not a duplicate of a previously processed 
sample, and quantifying the level of heterozygosity in each sample. 

 

Figure 2.3: Sample Quality Control Pipeline. After genotyping, samples go through a rigorous 
quality control procedure, the steps of which are described in detail below. Samples failing these QC tests are 
recollected or manually cleared for analysis. 

In developing a quality control procedure, we consider the following:

• Samples with low call rates are indicative of failure due to poor sample quality or 
array failure.  

• Samples with conflicting genetic and self-reported gender can indicate misreported 
gender or sample swapping.  Sample swapping can occur at many points along the 
processing pipeline, including during customer activation.  These potential sample-
swaps must be manually evaluated, and either recollected or cleared for analysis.  

• Although sample duplication is rare, we carefully check each sample to prevent 
sample duplication.  

• High rates of heterozygosity, the percentage of SNPs at which two different alleles 
are observed for a single sample, can indicate cases in which two samples have 
been cross-contaminated with one another.  Samples with high heterozygosity 
must be recollected.



Since samples are genotyped in batches of 96, representing a complete genotyping plate, 
we also carefully consider together all samples from the same plate. There are a small 
number of potential laboratory errors that can affect an entire plate of samples. Thus, if 
we observe more than two samples from the same plate with conflicting genders or high 
heterozygosity, the entire plate of samples will be held for manual examination.

Samples that pass all QC tests will proceed to the analysis pipeline, while those that fail 
one or more tests will be recollected from customers or manually cleared for analysis.

3. Reference Panel

What is a reference panel and why do we need one?

To determine where your DNA comes from, we need to compare it to a panel of 
reference samples with known origins. If we can identify samples to which you are 
genetically similar, and we know the ethnicity of those samples, we can infer your 
genetic ethnicity from that comparison.

Figure 3.1: Reference Panel Refinement Cycle. Schematic of the ethnicity estimation reference panel 
refinement cycle. In step 1 we select candidate reference samples from published data, the AncestryDNA 
consented customer list, and the AncestryDNA proprietary reference collection. For AncestryDNA samples 
we rely on pedigree data to select those with deep ancestry from a single population. In step 2 we filter 
out closely related samples from the candidate list. In step 3 we use principal components analysis 
(PCA) to remove samples that show a disagreement in pedigree and genetic origins. We also use PCA 
to guide regional cluster definitions. In step 4 the panel is performance tested using numerous metrics 
and compared to the previous release. The final result is a high-quality, well-tested reference panel that 
significantly improves genetic ethnicity estimation. The entire procedure is cyclic, and AncestryDNA 
will continue to make improvements on the panel with the goal of providing the most accurate ethnicity 
estimation possible with the data available.



Although there are many approaches for estimating genetic ethnicity, nearly all require 
a reference panel. The accuracy of our ethnicity estimate is highly dependent on 
the quality of this reference panel, and thus AncestryDNA has invested a significant 
amount of effort in creating the best possible reference set of samples.

Our current reference panel is version 2 (V2), to distinguish it from the initial Beta 
release. Version 2 represents a significant step-up in overall quality. Below we describe 
the steps taken to develop our current V2 reference panel, including sample selection, 
quality control and testing. The V2 ethnicity update that we describe here is not only 
an update of the reference panel from the Beta ethnicity version, but also increases the 
number of global regions representing “source” ethnicity populations from 22 to 26.

Who should be included in the reference panel?

We first create a list of candidate samples to include in the reference panel. Under 
perfect circumstances, we would construct our reference panel using ancient DNA 
samples of the true ancestors for each person likely to be an AncestryDNA customer. 
For example, since many of our customers have ancestors from the United Kingdom, 
we would prefer to have samples in our reference panel from the Angles and Saxons, 
who represent the historical populations present in northwestern Europe.

Unfortunately, it is not possible to sample historical populations. We must instead rely 
on DNA samples collected from individuals alive today who can trace their ancestry to 
a single geographic location. When asked to trace familial origins, most of us can only 
reliably trace one to five generations back in time, making it difficult to find individuals 
with knowledge about distant ancestry. This is because as we go back in time, historical 
records become sparse, and the number of ancestors we must follow doubles each 
generation.

Fortunately, knowing where your grandparents are born is often a sufficient proxy 
for much deeper ancestry. In the recent past, it was much more difficult and thus less 
common for people to migrate large distances. Because of this, it is frequently the case 
that the birthplace of your grandparents represents a much more ancient ancestral 
origin for your DNA.

As a final point on selecting candidates for the reference panel, we prefer to include 
samples from individuals for whom all ancestral lineages originate in roughly the same 
location, and thus from the same population. For many individuals, particularly those 
from the U.S., this is rarely the case. Individuals with recent ancestors from multiple, 
genetically distinct sources are referred to as admixed. Using samples from admixed 
individuals in a reference panel complicates analysis. However, this does not mean 
that a well-designed reference panel cannot be used to identify admixed individuals 
and assign to them proportions of genetic ethnicity originating in a set of source 
populations.



AncestryDNA Reference Panel Candidates

In developing the AncestryDNA ethnicity estimation V2 reference panel, we begin 
with a candidate set of 4,245 samples. First, we examine over 800 samples from 52 
worldwide populations from a public project called the Human Genome Diversity 
Project (HGDP) (Cann et al. 2002; Cavalli-Sforza 2005). Second, we examine samples 
from a proprietary AncestryDNA reference collection as well as AncestryDNA samples 
from customers consenting to participate in research. To identify AncestryDNA 
reference panel candidates from these two sets, family trees are first consulted, and a 
sample is included in the candidate set if all lineages trace back to the same geographic 
region. Although this was not possible for HGDP samples, this dataset was explicitly 
designed to sample a large set of populations representing a global picture of human 
genetic variation.

Care is taken to include non-admixed, unrelated samples from each participating 
population, making these samples excellent candidates for our reference panel. In total, 
our reference panel candidates include over 800 HGDP samples, over 1,500 samples 
from the proprietary AncestryDNA reference collection, and over 1,800 samples from 
AncestryDNA customers who have explicitly consented to be included in the reference 
panel.

Reference Panel Quality Control

We analyze a set of approximately 300,000 SNPs which are shared between the 
Illumina OmniExpress platform and the Illumina 650K platform used to genotype 
HGDP samples. After samples with low call rate are removed, we further filter out those 
who are likely to degrade the performance of the reference panel. Samples are typically 
removed for one of two reasons.

First, we remove genetically related samples from our panel. When we perform genetic 
ethnicity estimation, we are interested in computing the probability that an observed 
allele in a sample’s genotype came from each possible source population (see Section 4 
below). To do this, we need to estimate the frequency of this allele in each population. 
Since close relatives contain a significant amount of identical DNA, they do not 
represent independent samples of alleles in a population. Using related samples can 
thus distort the estimates of population allele frequencies.

To identify relatives, we use identity-by-descent (IBD) analysis. When two individuals 
inherit the same allele from a shared common ancestor, the alleles are said to be 
identical-by-descent. For a pair of samples, we estimate the proportion of genotyped 
sites for which one allele is IBD (P(IBD1)) using PLINK (Purcell et al. 2007; PLINK). 
We also estimate the proportion of genotyped sites for which both observed alleles are 
IBD (P(IBD2)).



Figure 3.2: IBD Filtering of Panel Members. We use identity-by-descent (IBD) analysis to filter related 
samples. We plot the proportion of the genome that is IBD for both alleles (P(IBD2)) against the proportion 
that is IBD for one allele (P(IBD1)). In this plot for sample from Italy (A), we can see that two pairs of sam-
ples have very high P(IBD1). P(IBD1) = 1 suggests a parent-child relationship while P(IBD1) = 0.5 suggests 
a grandparent-grandchild relationship. The same plot for Korean samples (B) shows no outliers but does 
reveal a generally high P(IBD2). This is due to the fact that the sites we genotype were particularly selected 
to vary in European populations. Many of these sites are likely to be homozygous in Asian populations. This 
is known as ascertainment bias.

For every pair of samples within each population, we examined a scatterplot of 
computed P(IBD1) and P(IBD2). While the background level of IBD observed within a 
population depends on the particular history of that population, we use the scatterplots 
to set population-specific thresholds for P(IBD1) and P(IBD2) (Fig. 3.2). Then, we 
remove one member of each pair that shows significant sharing.

Second, if the underlying genetic information is not in agreement with the pedigree 
data for a sample, we remove it. We use Principal Components Analysis (PCA) 
to identify these outliers. PCA is frequently used for exploratory data analysis in 
population genetics research (Jackson 2003). Briefly, it is a mathematical method 
for performing an orthogonal transformation of a data matrix, which in this case is a 
matrix of genotype data from our candidate samples. The result is a matrix containing 
a set of linearly orthogonal vectors (principal components) ordered by variance from 
largest to smallest. When applied correctly to genotype data, following SNP thinning 
by LD and removal of relatives, the first few principal components capture the genetic 
variation separating distinct populations (Patterson 2006).

We apply PCA to our global candidate set without relatives, and plot the first two 
components as a scatterplot. We color each sample by their population of origin, 



determined by pedigree in the case of AncestryDNA samples and by study sample label 
in the case of HGDP samples (see Figure 3.3).

Figure 3.3: PCA Analysis on European Panel Candidates. Scatterplot of the first two components 
from a Principal Components Analysis (PCA) of candidate European samples for the AncestryDNA reference 
panel. Visual inspection of PCA is useful for numerous aspects of data QC. First, it can be used to identify 
individual outliers, such as the three Italy/Greece samples (maroon) that appear in the middle of the Eastern 
European (red) cluster. It can also be useful for identifying poor sample grouping. We originally specified 
our Adygei samples (light green cluster in the middle of the plot) as part of the Finland/Northwest Russia 
region (larger light green group in the upper right), but it is clear from the plot that they would be more 
appropriately grouped with another region. Finally, it can reveal regions where there is limited genetic 
separation and clusters overlap (e.g. Ireland and Great Britain), and regions that can be further subdivided 
(e.g. Italy/Greece is clearly composed of two sub-groups).

Each population forms a cluster of points, where clusters are separated from one 
another with respect to genetic distance (and typically also geographic distance). 
Furthermore, these plots quickly reveal outlying samples who do not appear to be 
near to other samples from the same population. These are examples where the initial 
specified population of origin does not agree with the genetic origin represented in PCA 
space.

We visually inspect candidates for removal based on the first two principal components. 
Because different collections of samples reveal different amounts of population 
structure, PCA and outlier removal are repeated for different subsets of data. We first 
remove outliers at the global level (all samples together), then at the continental level for 
each continent (e.g. outliers in a PCA using only European samples), then at the regional 
level for each region (e.g. outliers in a PCA of all Scandinavian samples), and finally at 
the population level for each population (e.g. outliers from a PCA of Norway). 



Iterative Reference Panel Refinement

Finally, we divide our global reference panel into 26 distinct populations, 
corresponding to distinct genetic clusters based on the PCA and other analyses 
described above. Each of these populations represents a potential source population 
with which an AncestryDNA customer may share genetic ethnicity. These regions are 
described in further detail below.

Figure 3.4: Leave-one-out analysis of the V2 reference panel. Here we plot the results of an 
experiment in which each sample is removed from the reference set one-by-one and its ethnicity is estimated 
using the remaining panel samples. Each bar represents the average correctly predicted ethnicity for all 
samples from a given region. It is clear from this graph that for the majority of samples in each region, we 
predict at least 80% of the genetic ethnicity to be from the correct region. However, there are exceptions. 
In particular, our average prediction accuracy for samples from Great Britain, Western Europe, Iberian 
Peninsula, and Mali are not quite as high. There are many factors affecting the accuracy of these numbers, 
most importantly the number of reference samples in the panel for each region and the genetic distinctness 
of each region.

Before using the reference set to estimate ethnicities of AncestryDNA customers, 
we perform several experiments to lend support to the quality of this new reference 
set. This involves testing the performance of our ethnicity estimation procedure on 



the reference set of samples. (See Section 4 below for details regarding the statistical 
method used for ethnicity estimation.)

First, we use the new panel to do a leave-one-out analysis. In this experiment, we 
remove one sample from the reference panel and then use the remaining panel to 
estimate the ethnicity of the sample that has been removed. We repeat this process 
for every sample in the panel and then look at the average predicted ethnicity for each 
region in the set. Figure 3.4 shows the results of this experiment as a box plot.

The purpose of this analysis is twofold. First, reference panel samples with poor 
performance in the leave-one-out analysis were removed. This included samples 
from individuals whose leave-one-out ethnicity did not represent their ethnic group 
of origin. (See for instance, Figure 3.5) Second, the leave-one-out plots allow us to 
define population boundaries and demonstrate our ability to accurately estimate the 
ethnicities of our reference panel samples using our method (see next section). 

Figure 3.5: Removing Reference Panel Candidates. Leave-one-out estimation for a Reference Panel 
Candidate with 8 terminal ancestors from the Ivory Coast and Ghana region. While this sample was initially 
included as a candidate of the reference panel for the Ivory Coast/Ghana region, the sample’s leave-one-out 
ethnicity estimation reveals primarily Benin/Togo ancestry. As a result, this sample was removed from the 
reference panel.

V2 Reference Panel

The updated AncestryDNA ethnicity estimation V2 reference panel contains 3,000 
samples carefully selected as described to represent 26 distinct overlapping global 
regions (Table 3.1), each with a somewhat distinct genetic profile. As a comparison, our 
Beta panel represented only 22 distinct global regions.



Table 3.1: The Final AncestryDNA V2 Ethnicity Reference Panel

Region # samples

Great Britain 111

Ireland 138

Europe East 432

Iberian Peninsula 81

European Jewish 189

Scandinavia 232

Italy/Greece 171

Europe West 166

Finland/Northwest Russia 59

Africa Southeastern Bantu 18

Africa North 26

Africa Southcentral Hunter 
Gatherers

35

Benin/Togo 60

Cameroon/Congo 115

Ivory Coast/Ghana 99

Mali 16

Nigeria 67

Senegal 28

Native American 131

Asia Central 26

Asia East 394

Asia South 161

Melanesia 18

Polynesia 18

Caucasus 58

Near East 141

Total 3000

Regional Polygon Construction

As described above, we divide the globe into 26 overlapping geographic regions. Each region 
represents a population with a somewhat distinct genetic profile. Where possible, we use the 
known geographic locations of our samples to guide the delineation of regional boundaries. 
Figure 3.6 shows an example of the information used to define regional polygons.



 

Figure 3.6: Using geographical sample locations to draw regional polygons. Panel A shows 
the amount of Great Britain ethnicity predicted for a subset of European samples with geographic 
information. Each point is plotted on the map at the location representing the average birth location of their 
grandparents and the size of the point represents the proportion of ancestry predicted to be from the Great 
Britain region. The information was used directly in creating the outlines representing the ancestry regions 
shown to customers. This was unfortunately not possible for all regions, as the sample locations are not 
known for all samples in the reference panel.

In Figure 3.6A, we show the amount of ethnicity assigned to the Great Britain region 
for a subset of reference samples with known geographic locations. It is clear from 
the plot that there is a gradient of ethnicity in this region that is centered in England, 
tapers off quickly in Ireland to the west, and tapers more slowly into France and 
Germany to the south and east. Where possible, this information is applied directly to 
the drawing of regional boundaries (Figure 3.6B) that appear on the maps presented as 
part of the AncestryDNA product experience.

These polygons appear as nested regions with increasing depth of shading. The more 
darkly shaded portions represent the more likely physical locations of a customer’s 
ancestors, while the weakly shaded portions represent other possible locations of 
origin. Each polygon is accompanied by a detailed account of the history of the region.

The map below shows the 2nd tier set of polygons for all 26 ethnic groups, constructed 
as described above.

We discuss further detailed tests of the performance of the V2 ethnicity panel in 
Section 5. For methodological details of AncestryDNA’s genetic ethnicity estimation, 
see Section 4.

 



Figure 3.7: Second tier polygons for all 26 AncestryDNA genetic ethnicity regions.

4.  AncestryDNA’s Ethnicity Estimation

Introduction

The next step is to estimate a customer’s ethnicity based on the DNA of the reference 
set of samples, as well as the DNA of the customer. We assume that an individual’s 
DNA is a mixture of DNA from a set of “source” reference populations. In the example 
below, a sample gets each allele at each SNP from one of four “source” reference 
populations.

  

Figure 4.1: Example Customer Genotype. The table indicates the genotypes of the sample. The colors of 
the SNPs correspond to their locations of origin, indicated in the legend beside the table.

In order to make estimates of genetic ethnicity, we simply use what we know about the 
frequency of the alleles of those SNPs in the reference populations.  



Figure 4.2: Allele Frequencies In Different Populations

In this example, we are looking at the frequencies of the two alleles at the first SNP in 
each of the four reference populations. A’s are more common in Eastern Europeans and 
people from the Iberian Peninsula, A’s and G’s are equally likely in the Irish (from the 
Ireland region), and G’s are more likely in Central Asians. If a sample from an individual 
has two A’s, it seems that Eastern Europe and the Iberian Peninsula are the more likely 
places from which he or she may have gotten these two alleles. In our example, the 
individual has gotten 1 A from Eastern Europe, and 1 A from the Iberian Peninsula.

AncestryDNA uses similar reasoning to make our actual estimates, but with a rigorous 
statistical model that incorporates SNP data from across the genome. The second 
version of the AncestryDNA ethnicity estimation, in addition to using an updated 
reference panel, includes greater functionality to estimate statistical confidence of our 
genetic ethnicity estimates. 

Statistical Model

AncestryDNA uses a program called ADMIXTURE, developed by Alexander, 
Novembre, and Lange (Alexander et al. 2009; http://www.genetics.ucla.edu/software/
admixture/). The model estimates the proportions of “membership” in a set of ancestral 
clusters, or populations, for each sample given his or her genotypes (Prichard 2000). 
At AncestryDNA, we apply the “supervised” version of the model. Each of the reference 
populations corresponds to a source population, in which the allele frequencies of each 
SNP are known and fixed. Both the Beta version of ethnicity estimation, as well as our 
latest V2 estimates, use the same method.

To introduce the model, we begin by focusing on a single SNP in one sample from an 
individual in one population. For simplicity, we define the two alleles observed at this 



SNP as allele R and allele r. Since we will eventually examine more SNPs, samples, and 
populations, we index a SNP as j, a population as k, and a sample as i.

We first define the probability of observing a particular allele at SNP j in a sample from 
population k as

where pjk is the frequency of allele R at SNP j in population k.

These allele frequencies are fixed for each population k based on the allele frequencies 
in the reference sets, and are easily estimated. The statistical model that we use does 
not allow for uncertainty in the estimate of allele frequency, and so assumes that the 
estimate is the true value.

We now introduce the genotype for a sample as gijk: the genotype of sample i at SNP j 
in population k. For ease, we can define the genotype as the count of R alleles at a SNP 
position. Thus, gijk can take the values [0,1,2].

Then, the probability of a sample i’s genotype at a SNP j in population k is:

(Eqn. 1)

 

Figure 4.3: Example of Calculating Genotype Frequencies. This is a concrete example of calculating 
genotype frequencies from allele frequencies. In this example, if an individual is only from population k, 
where the frequency of allele R is 0.80, there is a high probability that the sample from that individual has 
R/R as a genotype, and low probability that the sample has the r/r genotype.

In the ADMIXTURE model, an individual is from a mixture of K source populations. 
(Since we examine 26 ancestral reference populations, K = 26 for AncestryDNA’s 
version 2 ethnicity estimation). Instead of looking only at the probability of a sample’s 
genotype in one population, we look at all of the possible reference populations, given 
the population allele frequencies.



Below (Fig. 4.4), we explain the intuition for this approach. Take the following concrete 
example, where we are examining only 2 populations, Europe East and Asia Central. 
The pie charts show the frequency of allele R in each population.

Figure 4.4: Example Genotype Frequencies for Two Populations. Suppose that there are two 
source populations: Eastern Europe and Central Asia. Then, for each population at this allele, there is a 
probability of observing R/R, R/r, and r/r genotypes, respectively.

In this example, if we saw a R/R genotype, the sample seems more likely to have come 
from Eastern Europe. If we saw a r/r genotype, the sample seems more likely to have 
come from Central Asia.

Rather than fixing a sample to be from only one source population at a SNP, a sample 
can actually be a mixture of ethnicities from multiple reference populations. We can 
give each sample a different “weight” to each ancestral population representing the 
proportion of their DNA that comes from this ethnicity. In order to allow different 
populations to have different contributions to a sample’s ancestry, we introduce a new 
parameter, qik, specifying the proportion of ancestry sample i has from population k. qik 

is in the range [0,1], and is under the constraint   for all i (since an 
individuals’ ethnicity is assumed to exclusively come from the set of K source 
populations).

We can now define the probability of sample i’s genotype, conditional only on their 
ancestry proportions. Below, we have removed the “in population k” description. This 
is because instead of looking only at one population, we allow a sample’s two alleles to 
come from multiple source populations.

The equations below are analogous to the single-population equations presented 
above, except that now the probability of observing each allele is a weighted average of 
the probability of the allele coming from any possible source population. We sum the 



allele frequency over all source populations, multiplying by the sample’s probability of 
membership to that ancestral population (qik).

  

(Eqn. 2)

Finally, we can condense the three formulas above into one equation for simplicity, 
where xij is in the set [0,1,2]:

(Eqn.  3)

Here, I(gij = 1) is the indicator function, and is equal to 1 when gij = 1 and equal to 0 
otherwise.

Take again the concrete example of two ethnicities, Europe East and Asia Central. 
Again, the pie charts below show the frequency of allele R. Assume for example that the 
proportion of ancestry from Europe East is 80%, and the proportion from Asia Central 
is 20% (note that the q’s sum to 1).

Figure 4.5: Scenario 1. We consider the genotype frequencies given allele frequencies for allele R when 
the sample has 80% ethnicity from Europe East and 20% ethnicity from Asia Central.

Given these ethnicity proportions, if the genotype of the sample is R/R or R/r, the 
genotype has a high probability. In contrast, the r/r genotype is far less likely than the 
R/r genotype.



Below (Fig. 4.6) we switch the sample’s ethnicity proportions to 20% European East 
and 80% Asian Central:

Figure 4.6: Scenario 2. In a separate case, we consider genotype frequencies for allele R when the sample 
has 20% Europe East and 80% Asia Central. Note how the probabilities of observing each genotype differ in 
this scenario when compared to scenario 1 (Fig. 4.5).

Now, the r/r genotype becomes the most likely, due to the high frequency of allele r in 
Asia Central. The R/R genotype now becomes less likely.

Clearly, different ethnicity proportions can affect the likelihood of observing a 
particular genotype. Thus, if we observed a sample with a R/R genotype at this SNP, 
we might find the first example ethnicity proportions more likely. This is because the 
R/R genotype is more likely when the ethnicity proportions are 80% Europe East/20% 
Asian Central than they are when the proportions are 20% Europe East/80% Asian 
Central.

In reality, however, we don’t look at just one SNP position. We look at many highly 
informative SNPs (see next section), which gives us much more information to learn 
about a sample’s ethnicity. We assume each SNP is an independent observation (see 
next section), and thus we can multiply the probabilities of the genotype over all SNPs.

We call a sample’s genotype at all G SNPs gi (we remove the subscript “j” to indicate 
that we are looking at all G SNPs). The possible values of a sample’s genotype are of the 
form Xi = [xi1, xi2 …. xiG], where each xij take values in [0, 1, 2]. So, the probability of a 
sample’s full genotype is:

    

(Eqn. 4)



Finally, ADMIXTURE does not just look at each sample separately, but rather at the 
entire set of samples. Therefore, we can define the full probability of the data (X, which 
represents the genotypes of all N samples) as

 

(Eqn. 5)

The ethnicity proportions qik can be represented by a matrix Q, which has N rows 
corresponding to N samples and K columns corresponding to K reference populations. 
A sample i’s ancestry in population k is the entry Q[i,k] = qik. The allele frequencies can 
be represented by P, which has G rows (corresponding to the number of SNPs) and K 
columns; the frequency of SNP j in population k is P[j,k] = pjk.

We estimate Q and P (see below) by maximum likelihood. For the maximization, we are 
primarily interested in Q. In practice, we maximize the log likelihood:

 

(Eqn. 6)

We find the qik parameters that make our observed data the most likely to have 
occurred — i.e., maximize the likelihood. This involves maximizing over NK parameters 
for Q, and GK parameters for P.

In the case of 2 populations for sample i, we could search across a grid of values to find 
the qi1 and qi2 that make the sample’s genotype at all G SNPs the most likely. What we 
find might look something like this. The x and y axes show the ethnicity proportions, 
and the coloring shows the “likelihood” of a sample’s genotype.

In this example, the sample seems the most likely to have ~70% ethnicity in population 
1 and ~30% in population 2. This is similar to our Europe East and Asia Central 
example. However, instead of just looking at the ethnicity proportions of 30% and 70%, 
we look at all possible combinations of proportions, and over all G SNPs in a sample’s 
genotype.

In reality, we have to estimate 26N q values for all N samples. Rather than this 
2-dimensional plot above, we would need a 26N-dimensional plot. Because it would be 
inefficient to examine all combinations of the 26N parameters, ADMIXTURE uses an 
accelerated approach to find the parameters maximizing the likelihood called block-
relaxation.



Figure 4.7: Example likelihood surface for ethnicity proportions of two ancestral clusters. 
Light yellow indicates parameter combinations with zero likelihood (since q1 + q2 = 1). Red indicates 

parameter combinations with the highest likelihood.

After the entire approach, we obtain estimates of qik for each sample. Below (Fig. 4.8) 
is an example, where each bar in the bar plot is representative of a sample. Solid bars 
represent samples included in the reference panel, who are representative of only one 
ethnicity. Bars with multiple colors represent samples whose ethnicity was estimated 
using the reference panel and ADMIXTURE, and have membership in multiple 
ancestral populations. 

Figure 4.8: Example ADMIXTURE results for a set of samples. Colors correspond to each 
ancestral cluster: purple, pink, yellow, orange, green, and blue (K=6 ancestral populations). Each vertical 
bar represents a sample, and the height of the colors in each bar indicate the proportion ancestry in each 
population. Samples denoted with black brackets represent “reference” samples; samples denoted with red 
brackets represent samples whose ethnicity was estimated by ADMIXTURE.



Assumptions of Admixture Model

There are a number of assumptions of the ADMIXTURE model. First, the model 
assumes that all SNPs are independent (which makes the multiplication in Equation 
4 valid). In reality, SNPs are not actually independent, because we inherit our DNA in 
chunks, and SNPs can be correlated. (This means that if you have a G at one position, 
you may be more likely to have an A at the second position instead of a C.)

Since the model requires that SNPs are independent, we remove SNPs that do not 
appear to be independent using a population-specific window-based LD thinning 
method using the program PLINK (Purcell et al. 2007) (as mentioned in Section 
2). While this means that we are using fewer SNPs in the estimation, we meet the 
requirements of the model by using an independent set of SNPs. In practice, we use 
over 100,000 independent SNPs, which effectively captures information from the 
entire set of over 300,000 SNPs (described in Section 3).

Another assumption that follows from the likelihood equation above (Equation 5) is 
that all samples are independent, or unrelated. In order to meet this assumption, we 
preprocess the genetic samples to place any samples from related individuals into 
separate runs of ADMIXTURE. In a particular run, we also remove any reference 
samples to whom a customer appears to be related.

It should also be noted that the approach we use is not entirely “supervised,” although 
we use a supervised version of the algorithm. While the reference populations are set as 
the “source” populations, genotypes of the tested samples can also influence the allele 
frequency estimates in the source clusters; i.e., the approach is not fully supervised. 
This is because the model not only estimates Q, but also P, as a function of both the 
reference samples and the customer samples (a total of N samples). While ideally the P 
values should remain stable regardless of the customer samples, the customer samples 
could slightly change the P estimates from their “true” values.

Customer samples are run in batches of varying sizes; due to the details of the 
algorithm described above, in theory a customer’s results could vary by batch. 
Extensive tests have shown that the effect of batch on customer estimates is minimal. 
This is because the batch size is very small compared to the size of the reference panel. 
Also, removing related samples from the same batch, as described above, ensures 
minimal effects on customer ethnicity estimates. 

Estimation of Uncertainty  

When considering AncestryDNA estimates of genetic ethnicity it is important to 
remember that our estimates are, in fact, estimates. The estimates are variable and 
depend on the method applied, the reference panel used, and the other customer 
samples included during estimation. In AncestryDNA ethnicity estimation version 2, 



we have added a measure of uncertainty to our ethnicity predictions qik that were not 
provided in the Beta version.

To do so, we use the bootstrapping calculation that is part of the ADMIXTURE 
program. The approach has been called bootstrapping in the statistical literature 
because you do not use statistical tables, simulations, or additional data to get the 
estimates of variability — you simply use the collected data. Bootstrapping is a 
statistical technique used to assess the variability of an estimate by repeated estimation 
of the same quantity using different resampled sets constructed from the available data.

Figure 4.9: Bootstrapping Illustration. 

In the case of genetic ethnicity estimates, one way these estimates might vary is if our 
dataset included a different set of SNPs. We use bootstrapping to estimate the effect 
of the chosen of SNPs on the uncertainty in our ethnicity estimates. For all samples, 
we resample “blocks” of SNPs using the default parameters of ADMIXTURE to make 
a new genome of the same size (called the “moving-block bootstrap”). Blocks, rather 
than individual SNPs, are sampled to account for any spurious associations between 
neighboring SNPs.

An important detail is that the blocks of SNPs are sampled with replacement. This 
means we could sample the same SNP block more than once, or not at all. In the 
example below, we have not sampled any orange colored blocks, but we have sampled a 
few coral blocks, and only one blue block.

We can then obtain additional Q estimates for each sample based on the SNPs in the 
new “genome.” After performing bootstrap resampling 40 times, we generate a sample 
of likely Q values for each sample (see Figure 4.10). For each ethnicity, we report to the 



customer the mean value of these re-sampled ethnicity proportions ( ). Based on the 
bootstrap samples, we also report a likely range for each estimate. For samples from 
individuals with no ethnicity in a particular region, reported ranges correctly include 
0% greater than 95% of the time.

Figure 4.10: Range of Estimates from Bootstrapping.

5.  Evaluation

It is critical for us to demonstrate that the AncestryDNA ethnicity estimation V2 
reference panel, which estimates ethnicities in 26 global regions, significantly 
outperforms the Beta reference panel (which estimates ethnicities in 22 global 
regions) (see Section 3). We perform extensive tests which allow us to evaluate our 
current performance and confirm that the performance of AncestryDNA ethnicity 
estimation V2 is much improved. In addition, our analyses guide research for future 
improvements to AncestryDNA ethnicity estimation.

Comparison to Pedigrees

First, our unique collection of pedigree data allows us to actually measure the similarity 
between pedigree estimates of ethnicity and genetic estimates of ethnicity. However, 



pedigrees contain information that is quite different from what we are estimating at 
AncestryDNA. They show only the locations of a sample’s known ancestors, whereas 
in genetic ethnicity estimation, we are attempting to estimate the unknown amount of 
DNA actually inherited from all of a sample’s ancestors. Genetic estimates of ethnicity 
also go back thousands of years, beyond the end of a pedigree paper trail. Regions 
identified as “populations” in a pedigree may have been very different thousands of 
years ago, and so may be represented differently in a genetic ethnicity estimate.

Nevertheless, the agreement between a pedigree and our genetic ethnicity estimate 
helps us to track improvements to our region boundaries, set of reference samples, 
and overall algorithms. Therefore, we have assembled several evaluation sets including 
samples from multiple European regions, samples with DNA from a cross-section of 
all 26 V2 regions, as well as samples that we believe come from a single one of our 26 
regions.

The updated V2 panel outperforms the Beta panel for all of our evaluation sets; see, 
for example, Figure 5.1. In samples whose known ancestors are only from the Finland/
Northwest Russia region (previously referred to as Ural Volga), we more consistently 
estimate samples to have nearly 100% ethnicity from this region using the V2 panel. 
The V2 ethnicity update also results in fewer estimates of ethnicity in other regions, 
such as Scandinavia (previously referred to as Europe North). Other regions show 
similar patterns in improvement (see also the section below).

Concordance between Relatives

To specifically test the consistency of our ethnicity estimates between relatives, we 
construct several datasets of samples from related individuals, which should share a 
predictable amount of genetic ethnicity. For example, because siblings inherit large 
amounts of the same genetic material from their parents, there is an expectation that 
their genetic ethnicity estimates should be similar. The same is true for first cousins 
and parents and children. Since DNA inheritance is a random process, the actual 
ethnicity percentages for relatives are not expected to be identical, but similar.

Using the new V2 panel, genetic ethnicity estimates show greater overlap of estimated 
regions between both siblings and first cousins. We also find greater consistency of 
genetic ethnicity estimates between parents and children when examining the estimates 
of nuclear families consisting of two parents and one child. With the new V2 panel, 
fewer than one region on average is present in a child that is not present in a parent.

In conclusion, the ethnicity V2 reference panel improves the consistency of genetic 
ethnicity estimation for relatives. These tests complement results from the pedigree 
concordance tests, confirming that genetic ethnicity estimates using AncestryDNA 
ethnicity estimation V2 are greatly improved from estimates using the Beta version.



Figure 5.1: Estimated ethnicities for test set 1 for single-origin individuals from Finland. A) 
AncestryDNA ethnicity estimation Beta version. B) AncestryDNA ethnicity estimation V2. Boxplots show the 

ethnicities estimated in each sample region.

Region Assessment

Analyzing samples from individuals whose known ancestors are from only one of our 
ethnicity regions also allows us to measure how much overlap exists between regions, 
to track improvements to our region boundaries, as well as to communicate results to 
our customers.

First, we can identify cases where no further development is immediately necessary. 
For example, AncestryDNA ethnicity estimation V2 accurately identifies genetic 
ethnicity for the European Jewish and Cameroon/Congo regions, among others (Figure 
5.2). In each of these cases, very little ancestry is mis-assigned to other populations, 
including geographically close neighbors.

We can also use these experiments to identify cases where our current approach could use 
future improvement. For example, the boxplots in Figure 5.3A show that samples from 
Great Britain are mis-assigned a significant amount of Europe West ethnicity. Figure 5.3B 
shows that the reciprocal is also true. Britain and Western Europe are geographically 
close, and a significant amount of historical migration (and hence, interbreeding) has 
occurred between these regions. Frequent interbreeding has led to very little genetic 
differentiation between these two regions, and thus our current approach has less power 
to identify the true ancestral source for samples from individuals with ancestors from 
these locations. (We note, however, that estimation for these two regions is improved 
using AncestryDNA ethnicity estimation V2 as compared to the Beta version.)



Figure 5.2: Leave-one-out ethnicity analysis. Leave-one-out ethnicity analysis for individuals from 
European Jewish (A) and Cameroon/Congo (B). Here we plot the results of an experiment in which each 
sample is removed from the reference set one-by-one and its ethnicity is estimated using the remaining panel 
samples. Boxplots show the ethnicities estimated in each region.

Figure 5.3: Leave one-out-ethnicity analysis. Leave-one-out ethnicity analysis for individuals from 
Western Europe (A) and Great Britain (B). Here we plot the results of an experiment in which each sample is 
removed from the reference set one-by-one and its ethnicity is estimated using the remaining panel samples. 
Boxplots show the ethnicities estimated in each region.



These analyses help us to understand the genetic diversity of the V2 regions and 
allow us to better communicate these results to our customers (e.g., even if all of your 
ancestors are British, you can expect to have some amounts of genetic ethnicity from 
adjacent regions). These analyses also aid us in prioritizing future developments for 
further ethnicity estimation updates.

6. Future Ethnicity Estimation Refinement

While AncestryDNA is extremely proud of the updates in this V2 release of genetic 
ethnicity estimation, we will continue to improve the product over time. The availability 
of new data, the development of new methodologies, and the discovery of new 
information relating to patterns of human genetic variation will all necessitate future 
improvements to the product.

Figure 6.1: Ethnicity Improvement Cycle.



Each of the steps above represents a critical part of our ethnicity estimation procedure 
and development. Currently, we are working to further expand our global reference 
panel for future ethnicity updates. We have already begun genotyping and analyzing 
samples for a future update which will provide finer-grained estimates of ethnicity. 
Simultaneously, we are also working to improve our algorithms for ethnicity 
estimation. Future ethnicity updates will include an improvement to our statistical 
methodology that will more fully leverage information in genetic data to reveal 
even more information about population history. Along the way, we always perform 
thorough testing, involving analyses like those described above. These tests inform the 
focus of our improvements, and help to refine our improvements as necessary.

Each new release of genetic ethnicity estimation will represent a step forward in our 
ability to give our customers a complete description of their genetic ancestry and 
inform them about their ancient genetic origins. We hope that, like the entire team at 
AncestryDNA, our customers will look forward to these future developments.
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