
AncestryDNA Matching White Paper 
Last updated July 15, 2020 
 

Discovering genetic matches across a massive, expanding 
genetic database 
 
Catherine A. Ball, Mathew J Barber, Jake Byrnes, Peter Carbonetto, Kenneth G. 
Chahine, Ross E. Curtis, Julie M. Granka, Eunjung Han, Eurie L. Hong, Amir R. 
Kermany, Natalie M. Myres, Keith Noto, Jianlong Qi, Kristin Rand, D. Barry Starr, Yong 
Wang and Lindsay Willmore (in alphabetical order) 

 

1. Introduction 
AncestryDNAⓇ conducts several genetic analyses to help customers find, preserve, and share 
their family history.  
 
Here we explain how we detect “matches” from DNA—more precisely, how we identify long 
chromosome segments shared by pairs of individuals that are suggestive of recent common 
ancestry. In the field of genetics, this is called "identity-by-descent" (IBD).  
 
Once we identify IBD segments, we use this information to estimate how people are related to 
one another (e.g., first cousins). By drawing connections between relatives through their DNA, 
we offer the opportunity for AncestryDNA members to expand their documented pedigrees. 
Additionally, matching is an important building block for other AncestryDNA features such as 
ThruLines™ and Genetic Communities™. 
 
In this paper, we describe the steps we take to identify and interpret segments of DNA that are 
identical-by-descent between individuals. We begin with an introduction to the key concepts 
behind DNA matching, explain the challenges in identifying matches, and finally we describe 
how we tackle the problem of detecting IBD in a large genetic database. 
 

1.1. How DNA is inherited—a brief primer 
To illustrate the concept of inheritance from a common ancestor, consider the small family in 
Figure 1.1. Humans have 22 pairs of chromosomes in which one chromosome is inherited from 
the father and one from the mother (sex-linked chromosomes—X and Y—have a different 
inheritance pattern, and are not included in this example). In Figure 1.1, each family member is 
represented by a pair of just one of the 22 pairs of chromosomes (the two colored bars), but the 
same concepts we illustrate apply equally to all 22 pairs of chromosomes. 
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The chromosomes are shown in four colors—two shades of blue inherited from the father and 
two shades of red inherited from the mother.  
 
Observe that each child inherits an equal amount of DNA (50%) from the mother (red) and the 
father (blue), since the child inherits one copy of each chromosome from each parent. Also, 
observe that each of the child’s chromosomes is a mixture of each parent’s two chromosome 
copies. Each child has one light and dark blue mixture from the father and one light and dark 
red mixture from the mother. This mixture is different in each child. The biological process 
responsible for the transmission of chromosomes from parents to child in this way is what is 
called meiosis. The random assortment of these chromosome fragments during meiosis is 
called recombination. The end result is that each child’s DNA is a random mixture of DNA from 
his or her two parents. 
 

 
Figure 1.1: Illustration of inheritance of DNA from parents to children. Each family member is represented 
by a pair of chromosomes inherited from their two parents. The chromosomes are colored to indicate 
DNA inherited from the same grandparent. The chromosomes of each child are a mixture of the 
chromosomes of his or her parents. 
 
Comparing the chromosomes of the siblings, lining them up from top to bottom (Figure 1.1), we 
observe that some regions of the chromosomes have the same color in each sibling. This 
indicates that they have almost identical sequences of DNA at those locations on their 
chromosome. These locations on the chromosome are called “identical-by-descent” (IBD) 
because they were inherited from a common ancestor (in this case, the common ancestor is the 
mother or the father).  
 
When we compare less closely related individuals, they usually have shorter and fewer IBD 
segments. Figure 1.2 depicts the chromosome pairs for three 5th cousins sharing the same two 
common ancestors (great-great-great-great-grandparents). In this case, these three 5th cousins 
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have each inherited only a small proportion of their DNA from the two common ancestors. Also, 
notice that because the transmission of DNA (through meiosis) has repeated several times over 
several generations, DNA from different common ancestors (red and blue) can end up on the 
same chromosome of an individual. Note that the gray portions of the chromosomes are 
inherited from other ancestors that are not shown in the diagram and may or may not contain 
segments that are IBD among the three 5th cousins. 
 

 
 
Figure 1.2: Illustration of DNA that is identical-by-descent between distant cousins (C, D, E). 
Chromosomes of the common ancestors (A) and their children (B) are shown. Chromosomes of other 
intermediate generations are not shown in the diagram. The blue and red circles indicate chromosome 
segments that are IBD between the indicated chromosomes. See the caption of Figure 1.1 for more 
details. 
 
While the three 5th cousins in Figure 1.2 have all inherited some DNA from the common 
ancestors shown in the figure, only a few short segments of the chromosomes are actually 
identical in the same places on the chromosome of different cousins. In this example, we see 
that only 3 short chromosome segments, indicated by the blue and red circles, are IBD. One 
segment of DNA is shared by cousins C and D, and two segments are shared by cousins D and 
E. By contrast, cousins C and E, despite the fact that they are related through their 
great-great-great-great-grandparents (A), do not have any identical DNA that is IBD through 
these two common ancestors. 
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The first goal of DNA matching is to accurately identify the DNA segments on the 22 
chromosome pairs that are identical-by-descent between pairs of individuals. Importantly, we 
would like to identify these IBD segments for every pair of customers in our database. Doing this 
accurately as well as efficiently for millions of people is not a trivial problem, and is an active 
area of research in the scientific community.  
 

1.2. Genotype phasing 
The first obstacle we face is that although DNA is transmitted from parent to child in long 
sequences, we do not have direct access to these exact sequences. (It is currently a 
prohibitively expensive and time-consuming process to read the exact DNA sequence inherited 
from each parent.) Instead, we only observe the unordered pairs of nucleotides—the basic 
building blocks of DNA, typically represented as A, T, G or C—at a small fraction of locations in 
the genome. This means that we only sample a small fraction of the complete DNA sequence, 
and we do not necessarily know which nucleotide came from the mother and which came from 
the father. 
 
To better appreciate how this complicates identification of IBD, consider the genetic data in 
Table 1.3. This table illustrates how we represent customer genetic data in our database. At 8 
specific DNA locations, or genetic markers, we have sampled the genotype from a single 
individual. The genotype is the pair of nucleotides present on the two chromosomes for an 
individual at a given genetic marker. (For more details on how these genetic markers are 
chosen, see Ethnicity Estimate White Paper). For example, at the first genetic marker, 
sometimes we observe individuals that have the “A” nucleotide (A stands for the nucleotide 
base adenine), and other times we observe individuals that have the “G” nucleotide (G refers to 
guanine). In other words, at this precise DNA location, we will either observe an A or G in an 
individual’s DNA. All the genetic markers we use are “polymorphic” (changing) in only a single 
nucleotide, hence they are called “single nucleotide polymorphisms,” or SNPs for short. At most 
SNPs, we observe only 2 possible nucleotides. Geneticists call these two possibilities “alleles.”  
 
Since each person has two chromosome copies (one inherited from each parent), for a single 
individual we can either observe two A’s, two G’s, or an A and a G. In this example, at the first 
marker we observe two copies of the G allele in the person’s genotype. SNP observations are 
easily stored in our databases as 0’s, 1’s and 2’s, representing the number of times we observe 
a specified allele in the genotype. 
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Table 1.3: Example of a small amount of genetic data from a single individual at 8 genetic markers. The 
genetic data are unordered pairs of nucleotides, or genotypes, which we can represent as numbers—0, 1 
or 2—for the number of times each of the alleles is observed in the genotype. 
 
In Table 1.3, at genetic locations 1, 2, 5, 6 and 7, the mother and father have transmitted the 
same allele to the child. As a result, we can tell directly from the genotype the value on each of 
the two chromosomes (i.e., each chromosome has an G for marker 1). On the other hand, 
consider genetic marker 4. In this case, the individual’s genotype is an A and a G; we do not 
know whether the A comes from the father and the G comes from the mother, or vice versa.  
 
If we want to compare individual chromosomes to identify which segments are IBD, we need to 
know the sequence of alleles (letters) on each chromosome. This first requires that we 
determine the assignment of alleles to chromosomes; for example, we need to assign the A 
allele to mom or dad’s chromosome and the T allele to the other parent’s. We need to do the 
same for markers 3 and 8 as well. The process of determining the assignment of allele copies to 
chromosomes is called genotype phasing. In section 2, we describe our approach to this 
problem. 
 

1.3. Finding matching segments 
Once the phasing is complete—that is, once we have assigned the two allele copies of each 
genetic marker to each of an individual’s two chromosomes—the second step is to identify 
identical DNA sequences between all pairs of individuals in the customer database. This is 
challenging because it involves comparing a very large number of sequences. AncestryDNA’s 
database contains tens of millions of genotyped DNA instances, representing hundreds of 
trillions of pairs of individuals to check for matching segments.  An additional complication is that 
the database is not static—it is continuously growing as more people take the AncestryDNA 
test.  
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Quantitative geneticists have developed very fast software such as GERMLINE (Gusev et al., 
2009) and Parente (Rodriguez  et al., 2015) to identify matches in a large number of genotype 
samples. We have developed our own implementation of GERMLINE, specifically designed to 
compute IBD in a growing database. .  

1.4. Assessing informativeness of matches for relationship estimation 
Detecting matches enables us to estimate relationships between people. In general, the more 
identical segments of DNA shared between two people, the more likely it is that the two people 
share a recent common ancestor (refer to Figures 1.1 and 1.2). In practice, however, the IBD we 
detect may reflect other factors, such as selective pressures (Albrechtsen et al., 2010), or more 
distant shared genealogy, in which case this IBD will confound the relationship estimates. An 
additional consideration is that since shorter IBD segments are difficult to identify accurately, a 
large proportion of shorter IBD segments that we detect could be false, and therefore could 
contribute errors to relationship estimation. In order to improve the accuracy of our relationship 
estimates, we have developed an approach to quantify the “informativeness” of IBD for 
estimating relationships. IBD segments that are expected to be less informative of recent 
relationships contribute less evidence to the relationship estimate. We describe this process, 
called “Timber,” in Section 4. 
 

1.5. Estimating relationships  
Finally, the fourth challenge is how to translate the identification of IBD segments to accurate 
relationship estimates. Identical twins are IBD across their entire genome, and parent-child pairs 
are IBD on half their chromosomes. Beyond this, however, due to the random process of 
meiosis and recombination, the exact relationship between two individuals is uncertain based on 
IBD alone. On average, more closely related people are IBD across a greater portion of their 
genomes, but the correspondence between amount of matching and the actual pedigree 
relationship is variable. 
 
To develop a method for accurately estimating relationships from IBD, we use genetic data from 
thousands of pairs of individuals with known family relationships (either real people with 
documented pedigrees or simulated individuals with known pedigrees). Additionally, we use 
other information beyond IBD inferred from genetic data to ensure that our estimates of close 
relationships—specifically, parent-child and sibling relationships—are as accurate as possible. 
Methods for relationship estimation are detailed in section 5. 
 
See Figure 1.4 for an overview of the matching and relationship analysis pipeline. 
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Figure 1.4: Overview of the Matching and analysis pipeline.  
 

2. Genotype phasing algorithm 

2.1. Introduction  
As explained in section 1.2, genotypes alone often cannot tell us which allele copy was inherited 
from the father and which was inherited from the mother. One exception to this is when we have 
genotypes sampled from both parents and child (called a trio). In this case, since the laws of 
genetic inheritance tell us that alleles can only be transmitted from parent to child in specific 
ways, we can use this information to very accurately assign alleles to each of the two 
chromosome copies. However, since we cannot depend on all customers taking the 
AncestryDNA test with both their parents, we need a more sophisticated approach that can 
accurately determine the phase of the genotypes—the assignment of alleles to chromosome 
copies—without parental information. 
 
The strategy is to simultaneously phase the genotypes from a large number of unrelated 
individuals. Since the genotypes observed at consecutive SNPs can be phased in many 
different ways, the basic principle is to prefer a phase that results in two sequences on each of 
the chromosomes that are also observed in many other samples. In other words, if the phasing 
yields a sequence that is unique, this is probably the wrong way to phase the genotypes. This 
principle is based on the expectation that short sequences, called haplotypes, are typically 
shared by many people in a large population. 
 
Practically speaking, this means that we have a chicken-and-egg problem: accurate phasing of 
the genotypes requires us to determine the more common sequences (the haplotypes); to 
determine the more common haplotypes, we need to first know how to phase the genotypes. 
Fortunately, software such as BEAGLE (Browning and Browning, 2007) and HAPI-UR (Williams 
et al., 2012) are designed specifically to solve this chicken-and-egg problem from thousands of 
samples simultaneously. 
 
An important benefit of such approaches is that phasing accuracy improves as more unrelated 
samples are analyzed simultaneously. Therefore, in principle we could achieve highly accurate 
phasing by simultaneously analyzing the hundreds of thousands of genotype samples from 
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AncestryDNA customers. However, as fast as methods like BEAGLE and HAPI-UR are, they 
were not designed to jointly handle millions of samples. 
 
Therefore, we have developed a modified strategy, which we call “Underdog.” Underdog learns 
haplotype frequencies—or, more precisely, frequencies of “haplotype clusters”—in a large 
number of AncestryDNA samples. Then, once we have learned haplotype cluster frequencies, 
we use Underdog to quickly phase the genotypes of new customers.  

2.2. The BEAGLE genotype phasing algorithm 
From genotype data, BEAGLE builds a statistical model that summarizes the distribution of 
haplotypes in a population and uses the estimated haplotype distribution to estimate genotype 
phase. To make this computation feasible, we subdivide each chromosome into small segments 
(or “windows”) of 500 SNPs each, and we separately build a haplotype-cluster model for each of 
these chromosome windows. The probability distribution over haplotypes in a window is defined 
using a Markov model (Browning, 2006). 
 
To illustrate the phasing procedure, suppose that we have a training set of haplotypes that have 
been inferred with very high accuracy from genotypes (e.g., genotypes belonging to trios). 
BEAGLE can estimate genotype phase without such a training set, but it is simpler to explain 
the process this way, and it mirrors the scenario in which we use Underdog (below) to phase 
new customer genotype samples. 
 
More formally, within a single 500-SNP window, BEAGLE takes as input (1) a reference set R of 
previously phased genotypes, and (2) a query set U of unphased genotypes (see Appendix A). 
BEAGLE starts by randomly assigning phase to the genotypes U. Then it builds a new set of 
haplotype-cluster models from the randomly phased genotypes U, and the previously phased 
genotypes R. These haplotype-cluster models are then used to estimate a new (and hopefully 
more accurate) phase for genotypes U. The process iterates until the haplotype-cluster models 
converge to a solution. This final set of haplotype-cluster models is used to compute the most 
likely phase for each genotype in U. The final phased genotype sample is combined from the 
phase estimate in each window. For more details on the BEAGLE algorithm, consult the 
pseudocode in Appendix A and the original publication (Browning and Browning, 2007).  
 
The procedure BEAGLE uses to build models from a set of example haplotypes (R) is based on 
the ideas described in Ron et al. (1998); see also Browning (2006). Each node in the model 
represents a “cluster” of commonly observed haplotypes; each edge represents a transition 
from a more general haplotype cluster to a more specific one by splitting on the allele at a given 
level (i.e., SNP). A model is built recursively by splitting nodes at level d into two children each, 
one for each possible allele at that level, or SNP. However, nodes at level d + 1 whose 
haplotype clusters have “similar enough” distributions of haplotypes are merged together. After 
merging all such pairs of nodes, this completes the procedure for level d + 1, and the model 
building proceeds to the next level. The haplotype-cluster model, and the process of merging 
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nodes, are illustrated in Figure 2.1. Algorithms 2 and 3 outline this model-building procedure in 
more detail. 
 

 
 
Figure 2.1: An illustration of the haplotype-cluster model in BEAGLE within a single window and 
modifications to BEAGLE to handle large data sets (Underdog). For illustration, the window only includes 
13 SNPs. (a) Each node corresponds to a cluster of haplotypes; each haplotype is represented by a 
sequence of colored dots. The start state consists of all the haplotypes in the training set (R). (b) Each 
node has up to two outgoing transitions for the two possible alleles (in the diagram, blue and red). A 
transition to a node at level d splits a haplotype cluster based on the SNP at position d in the haplotype. 
(c) The haplotype clusters at level 1 resulting from splitting on the first (left-most) SNP. Note that only the 
SNPs after the first are shown in the clusters, as the merging process at level d is concerned only with the 
distributions of the haplotypes that follow the dth SNP. (d) We keep track of the counts for each transition 
(shown as a number beside each arrow). They will determine the transition probabilities for the HMM. (e) 
These two nodes at level 2 will be merged during the learning process because the distribution of 
haplotypes in each of the nodes is identical after splitting. (f) BEAGLE models do not have edges for 
haplotypes that do not appear in the training set (e.g., red, red, blue); in Underdog, however, we allow for 
an edge corresponding to a haplotype count of zero. When we initialize the model’s transition 
probabilities, we assign a nonzero likelihood to such haplotypes. (g) We continue to split and merge 
nodes (see Algorithm 2) until all D = 13 alleles in the haplotypes are represented in the model. Level D 
will always be a single terminal node. In the diagram, we only show the first 3 of the D = 13 levels. 
 
So far, we have described a model that defines a probability distribution for a single haplotype 
sequence within a single window. To apply this model to the genotype data, we need to jointly 
model two haplotypes; that is, we have one haplotype-cluster model for each chromosome in 
the pair. Conveniently, a pair of haplotype-cluster models can be used to define a hidden 
Markov model (HMM), in which: (1) we have one hidden state for each level, or SNP; (2) each 
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hidden state in the HMM represents the assignment of the haplotype-cluster model state to 
each of the chromosomes at the given SNP; and (3) the HMM transition probabilities are 
defined by the counts of transitions in the haplotype-cluster model (Figure 2.1, part d). 
Therefore, the set of all paths through the HMM that are consistent with the genotype yields a 
probability distribution over possible ways of phasing the genotype. Once the haplotype-cluster 
model is built, we define an HMM, and this HMM allows us to efficiently sample the phase given 
the genotype. The genotype phase estimate (see Algorithm 1 in Appendix A) is the most likely 
hidden state in the HMM, and this is efficiently computed using the Viterbi algorithm (Rabiner, 
1989). The final phase across the entire chromosome is obtained by joining the phase estimates 
from individual windows; see Appendix B for details. 
 
An important limitation of BEAGLE is that the computational expense of the model-building 
process increases with the size of R and U. Further, the output from BEAGLE cannot be easily 
reused to phase new genotype samples. To surmount these limitations, we propose an 
alternative approach: we learn haplotype-cluster models once from a large training set of 
phased genotypes, we store the learned models to file, then we use these models to quickly 
phase new genotype samples. We describe these enhancements to BEAGLE—what we call 
Underdog—in appendix B. In the following section, we describe our experiments that 
demonstrate improvements in computational cost and phasing accuracy using Underdog. 

2.3. Evaluation of genotype phasing algorithms 
Here, we compare the run time and phasing accuracy of BEAGLE applied to datasets of 
different sizes against the runtime and accuracy of the Underdog phasing algorithm. We 
evaluated phasing accuracy on a test set of 1,188 unrelated individuals from our database that 
have been phased accurately because they each belong to a trio and were phased using 
parental information (that is, we used the genotypes of both parents to determine phase, but we 
do not include the parents in the test set available to BEAGLE and Underdog). To assess 
phasing accuracy, we consider only genotypes that can be phased unambiguously in the trio. 
Another evaluation metric we use is impute error—the rate at which genotypes are incorrectly 
estimated when 1% of genotypes are set to missing uniformly at random.  
 
Table 2.1 shows that our implementation infers the phase of new genotype samples more 
accurately than BEAGLE—and with much lower computational cost—provided that we are able 
to make use of a very large panel of phased genotypes. Underdog is able to achieve high 
accuracy because it can benefit from hundreds of thousands of samples. Further, our distributed 
processing implementation leads to very low run times. As the AncestryDNA database has 
grown, we have been able to construct larger and larger phasing panels, leading to greater 
accuracy in phasing customer samples. (As of 2020, customers taking the AncestryDNA test are 
phased using a panel of one million genotypes.)  
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Table 2.1: Results from an experiment comparing phasing accuracy using BEAGLE version 3.3.2 with 
data sets of different sizes against phasing accuracy using Underdog with a much larger reference panel 
of 189,503 samples, in which these samples were phased in large batches using HAPI-UR. These are 
results for chromosome 1 only. We run BEAGLE using default parameters, except we set n = 20 (this is 
the number of phasing estimates that are simulated for each genotype sample). Phasing error is 
evaluated in a test set with 1,188 trio-phased samples. Phasing error, or "switch-error rate," is calculated 
as the rate of disagreement between the estimated phase and the trio-phased haplotype, only for loci in 
which phase can be determined unambiguously; i.e., sites with at least one homozygous individual in the 
trio (Williams, 2012). “Model size” refers to the total number of haplotype-cluster model states across all 
chromosome windows. For Underdog, we show two computation times: the total time taken to complete 
the computation on a single CPU, and the computation time on a Hadoop cluster with 20 32-core 
compute nodes (we use the MapReduce framework; see Dean and Ghemawat, 2008). 
 
In summary, since we have decoupled the model-building process from estimating genotype 
phase, we observe a large reduction in computational cost for estimating phase in new samples. 
The most computationally intensive step—building the haplotype-cluster models—is a 
one-time-only computational investment. Another benefit to this approach is that there is no 
“batch effect” in which the phasing estimates are slightly different depending on which samples 
are included in the batch to be phased simultaneously. This ensures greater consistency in the 
phasing estimates.  
 

3. Detecting IBD 

3.1. Matching Algorithm  
Once we have estimated the phase of each genotype sample, we turn to the problem of finding 
IBD segments, or “matches,” shared by pairs of samples. This effectively reduces to the 
problem of finding long sequences (strings of A’s, T’s, G’s and C’s) that are identical in pairs of 
chromosomes. However, there are several practical issues that arise due to the peculiarities of 
genetic data, as well as the size of our data set, that make this problem more complex than it 
might first appear. In this section, we first describe our approach, then explain how this 
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approach addresses some of the common problems in finding matches from phased genotype 
data. 
 
Our general strategy is divided into 5 steps. We illustrate the individual steps in Figure 3.1.  
 

1. Subdivide each chromosome into short segments, which we call “windows.” In our 
implementation, all windows contain exactly 96 SNPs. This number was chosen to 
balance computational cost and accuracy. (Note that these windows are not the 
same as the ones chosen for genotype phasing [see Figure 3.1, section B] and that 
we use 10 SNPs per window in the example in order to make it easier to follow.) 

2. For each pair of individuals, identify windows in which the alleles at all SNPs in one 
of the individual’s two phased haplotypes are identical to all the alleles at the same 
positions in one of the other individual’s phased haplotypes. We call these “seed 
matches” (see Figure 3.1, section D). 

3. For each seed match, we attempt to extend the seed match in both directions along 
the chromosome until (a) the beginning or end of the chromosome is reached, or (b) 
a homozygous mismatch is detected. A homozygous mismatch is a pair of 
genotypes at the same SNP that are incompatible regardless of how they are phased 
(for example, one individual has two A’s and the other individual has two G’s). The 
estimated IBD region is defined by the start and end positions of the SNPs included 
in the extended segment (see Figure 3.1, section D). 

4. Calculate the length of the candidate matching segment in terms of genetic distance, 
measured in centimorgans (cM). Genetic distance is proportional to the expected 
rate of recombinations along that stretch of chromosome. Since individual 
chromosomes accumulate recombination events through successive generations of 
inheritance, IBD segments spanning large genetic distances suggest more recent 
inheritance. Below, we explain how we use the genetic distance of detected IBD 
segments to estimate relationships. 

5. If the segment is longer than 8 cM, we retain the segment to store as a match in our 
database, unless we dismiss it as identity by state (see Section 4.2). 
 

The procedure we have outlined here is described in Gusev et al., 2009. 
 
As we described in step 2, we use the phased genotypes to identify seed matches. In the 
example (Figure 3.1), we identify 2 seed matches in 2 adjacent windows. Next, we extend the 
candidate IBD segment until a homozygous mismatch is encountered. In the example, the error 
in the estimated phase here does not prevent SNPs in this window from being included in the 
IBD segment. This illustrates the importance of not relying solely on the haplotype sequences 
identified in the genotype phasing step to identify IBD segments. Although our phasing is very 
accurate overall, even small amounts of phasing error will confound detection of long segments 
that are IBD. Our solution is to use the phased genotypes to suggest initial candidates (seed 
matches), then in step 3, we use the unphased genotype data to extend the matches. In this 
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example, the matching segment is extended across most SNPs shown in the figure, and is 
nearly identical to the length of the ground-truth IBD segment.  
 

 

 
Figure 3.1: IBD detection example in two DNA samples at 40 consecutive genetic markers (SNPs). In A, 
we show the (unobserved) ground-truth sequences at the 40 SNPs, highlighting in red the pair of 
sequences that are IBD. B shows the genotype data—unordered pairs of alleles at 40 SNPs—that are 
available in our data. Note that genotypes “AG” and “GA” are identical because the order of the alleles in 
the genotype is not informative. These genotypes are subdivided into 4 windows each containing, for 
illustration only, 10 SNPs. C shows the genotype phase—assignment of the alleles to the two 
chromosome copies—that is estimated by Underdog, highlighting in red the same IBD segment in A. 
Observe that Underdog incorrectly phases the 7 right-most SNPs in the IBD segment. D shows the 
results of matching by GERMLINE to the phased genotypes shown in C. First, two windows containing 
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seed matches are identified. The seed matches, highlighted in light blue, are identical sequences within a 
window. Second, beginning with one of the seed matches, the matching segment is extended in both 
directions until a homozygous mismatch is identified. The homozygous mismatches are indicated with an 
asterisk (*). The final IBD segment spans 37 SNPs, as indicated by the orange bar. This is nearly identical 
to the SNPs spanned by the ground-truth IBD segment (shown in A). The only error is the inclusion of an 
additional SNP on the left-hand side that is reached before a homozygous mismatch.  

 
An important feature of our method is that we do not keep track of all matching segments; in 
step 5, we filter out a candidate match if its genetic distance is less than 8 cM. The cutoff of 8 
cM was chosen after considering several factors. The first factor is data storage. Since the 
number of matching segments grows exponentially with decreasing length, we dramatically 
reduce the storage requirements of our matching database by increasing the cutoff. A second, 
and more critical, factor is that the accuracy of IBD detection drops rapidly with decreasing IBD 
length—that is, the shorter the length of the detected IBD segment (expressed in genetic 
distance), the less likely it is that the detected chromosome segment is truly inherited from a 
common ancestor.  
 
To illustrate the phenomenon of decreasing accuracy with decreasing IBD length, we examine 
concordance of matching between parent and child using the described IBD detection strategy. 
Typically, if two individuals, X and Z, are IBD across a given chromosome segment, then we 
would expect that Z is also IBD with at least one of the parents of X. Therefore, we can assess 
accuracy of IBD detection by quantifying concordance of IBD between parents and child; more 
accurate IBD detection should yield better parent-child concordance.  
 
Figure 3.2 summarizes IBD detected in 20,000 matches chosen so that for every match 
between individuals X and Z, there is a corresponding match detected between individuals Y 
and Z, such that Y is a parent of X. As expected, most of the points in the scatterplot cluster 
around the diagonal (the dotted orange line); for these points, the amount of IBD detected in the 
child is nearly identical to the amount of IBD detected in the parent. However, as we move 
toward the bottom-left corner of the plot, more and more points are distributed away from the 
diagonal This shows that concordance is not as strong for smaller amounts of IBD. (Note that 
the smaller number of points away from the diagonal near 5 cM is an artifact due to the fact that 
we are only looking at pairs with total IBD at least 5 cM.) 
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Figure 3.2: Concordance of matching between child and parents. Each point in the scatterplot 
corresponds to triple (X,Y,Z) such that individuals X and Z share IBD > 5 cM, individuals Y and Z share 
IBD > 5 cM, and individual Y is a parent of X. A total of 20,000 such triples are plotted in this figure. The 
horizontal and vertical axes give the total IBD detected (in cM). Note that IBD is shown on the logarithmic 
scale and only for IBD < 100 cM. 
 
We take a second look at this concordance in Figure 3.3. Here, we quantify concordance by 
counting the number of times that IBD is shared with the mother, father, or both parents, 
stratified by total IBD length in the child—in cM. (We do not compare exact locations of IBD 
segments, only total IBD length between pairs of individuals.) As the length of the detected IBD 
segment between child X and individual Y decreases, it is less likely that we also detect IBD > 6 
cM between individual Y and one of X’s parents. This indicates that detection of smaller 
amounts of shared IBD is less accurate. In other experiments, Durand et al. (2014) have shown 
that GERMLINE is particularly inaccurate for IBD segments less than 4 cM.  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Figure 3.3: Concordance of matching between child and parents. For a given total IBD length between 
child X and individual Y, we count the number of times that we detect IBD with this length and compare 
this to the number of times that we detect IBD (with total length > 6 cM) between the father of X (blue) 
and with the mother of X (green), and with both parents (orange). This figure is compiled from matching 
results on 16,178 mother-father-child trios. 
 
One complication is that accurate detection of IBD requires that we have a high density of SNPs 
in all regions of the genome. The array technology that we use to acquire the genotype data 
yields high-density SNP data across most of the genome, but there are some genomic regions 
with unusually low SNP density. This means that any matches that overlap these SNP-poor 
regions will be less reliable. To counteract this problem, we discount these matches by reducing 
their total length (in cM). 
 
Another complication is that the identification of seed matches quickly becomes intractable as 
the number of DNA samples grows.  We use hashing to avoid explicitly comparing every pair of 
haplotypes in each 96-SNP window (that would be billions of billions of comparisons). More 
precisely, we implement a hash function, f(h,w), that maps a character string h and window 
identifier w to an integer value. It has the property that if two different individuals have identical 
strings in the same window, they will have the same value of f(h,w). This makes it possible to 
quickly identify exact matches in a scalable fashion. Since the number of seed matches within a 
window is typically a very small proportion of the total number of chromosome pairs, hashing 
yields extremely fast detection of seed matches. 
 
GERMLINE is able to efficiently and accurately identify IBD segments suggestive of recent 
common inheritance in a large database of genotypes. However, we cannot use GERMLINE 
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directly for detecting matches among AncestryDNA genotype samples because GERMLINE 
was not designed to efficiently detect IBD in a growing database. Therefore, we have developed 
our own implementation.  
 
 

4. Adjusting IBD for relationship estimation 

4.1. Motivation 
IBD detected between two genotype samples can be used to estimate a pedigree relationship 
because more closely related people have, on average, more DNA that is IBD. To improve the 
accuracy of this estimate, we first apply a simple algorithm that de-emphasizes the evidence 
from detected IBD (see section 3) that is less likely to be informative of close relationships. We 
call this algorithm “Timber.” 
 
To understand the motivation behind this algorithm, it is instructive to examine matching results 
aggregated over a large number of samples. In Figure 4.1, we show aggregated matching 
results for three individuals selected from our database. For each of the 96-SNP windows used 
for IBD detection, Figure 4.1 shows the total number of IBD segments longer than 6 cM that 
were detected in pairs (i, j), in which i is the selected individual, and j is an individual in from a 
reference panel of over 300,000 genotypes (the Timber reference panel). Section A illustrates a 
common case in which IBD is detected in individual i with only a very small proportion of 
samples in the Timber reference panel within any given region of the genome. This reflects our 
expectation that very few pairs of individuals in the AncestryDNA database are closely related. 
By comparison, individual B has a substantially higher rate of matching with the Timber 
reference panel. Many factors could explain the different genome-wide rates of IBD shared by 
individuals A and B. For example, if we assume that IBD detection is equally accurate in 
individuals A and B, then demographic or historical factors could explain the different rates of 
matching; for example, one hypothesis could be that individual B’s ancestors have lived in the 
United States for a longer period of time, whereas individual A’s ancestors are more recent 
immigrants to the United States. Under this scenario, we would be more likely to find other 
relatives of individual B than individual A since, as of this writing, the vast majority of people who 
have taken the AncestryDNA test are from the United States. This illustrates a trend that we 
have observed more generally: the overall pattern of IBD can differ substantially from one 
individual to the next, and these differences may reflect different ancestral origins. 
 

17 



 
Figure 4.1. A, B, and C show (separately for three individuals) match counts in all 96-SNP windows 
across the genome. More specifically, in each window on autosomal chromosomes 1 through 22, we 
count the number of times that the window overlaps an IBD segment detected between the given 
individual (labeled A, B, or C) and individuals included in a reference panel of 325,932 genotypes. 
 
Next, consider the individual in section C, who has a higher rate of matching than both 
individuals A and B. In addition, the matching rate is highly variable across the genome; certain 
regions, such as a region near the centromere of chromosome 3, and a region on chromosome 
10, overlap with an unusually large number of detected IBD segments. If all detected IBD is due 
to inheritance from recent common ancestors, it is extremely unlikely that we would observe 
such excessive IBD in specific regions of the genome. This suggests that many of these spikes 
in IBD are unlikely to reflect recent inheritance from common ancestors. Instead, these spikes 
more likely reflect other demographic factors, or identity by state (IBS) (see, for example, 
Albrechtsen et al., 2010). The implication is that IBD detected in regions with high rates of 
matching is expected to be less useful for estimating recent relationships.  
 
Motivated by these observations, we have developed a procedure, Timber, that uses match 
counts aggregated over thousands of samples to inform relationship estimation. The strategy is 
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to analyze matching results accumulated over a large number of genotype samples, then 
identify, separately for each individual, regions of the genome with unusually high rates of 
matching. Once we have identified these regions, we reduce the genetic distance of detected 
IBD segments overlapping these regions. We call these adjusted distances “Timber scores.” 
Since individuals can vary widely in genome-wide patterns of matching, as we observed in 
Figure 4.1, we run this analysis separately for each genotype sample. In the next section, we 
describe the Timber algorithm in greater detail. 

4.2. The Timber algorithm 
To compute Timber scores for all IBD segments, we take the following steps: 
 

1. Select the Timber reference set, denoted by R. Our reference set contains over 300,000 
genotype samples. 

2. Subdivide the genome into windows. Here, we use the same 96-SNP windows used to 
detect IBD. Let n be the number of windows. 

3. For each sample i, and for each window, count the number of matches detected in 
GERMLINE between sample i and i' R that overlap the window. We represent these ∈  
counts as a vector, Ci = (Ci,1, Ci,2, …, Ci,n). 

4. For each sample i, compute weights Wi = <Wi,1, Wi,2, …, Wi,n> = f(Ci), in which each 
weight Wi,j is a number between 0 and 1, and f is a probability density function fitted to 
the matching data Ci  for sample i. (Here we do not discuss the specification of this 
model, and the procedure for fitting this model to the data.) 

5. Compute the Timber score for each matching segment. Let g be a matching segment 
detected in pair (i, i'), and let g be the set of all windows j that overlap segment g.∈ j  

The Timber score for segment g is defined as TimberScoreg = dist(j) × Wi,j × Wi',j, in∑
 

j∈g
  

which dist(j) is the genetic distance spanned by the SNPs assigned to window j. 

 
See Appendix C for a description of these same steps in pseudocode. 
 
When an IBD segment does not overlap a region with an unusually high rate of matching, the 
final Timber score is nearly identical to the original length of the IBD segment. On the other 
hand, when some of the windows overlapping the segment exhibit an abnormally high rate of 
matching with the Timber reference panel, the Timber score will be smaller than the original 
genetic distance of the IBD segment. 
 
One drawback to this procedure is that it considers each window in isolation, ignoring the 
information from neighboring windows on the same chromosome. To illustrate why this can be a 
limitation, consider the case when IBD between two individuals spans a large proportion of 
chromosome 1. In this case, we can usually be confident that the detected IBD was inherited 
from a recent common ancestor, and therefore it would not make sense to de-emphasize IBD 
which overlaps regions on the chromosome with an unusually high rate of matching. Thus, 
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Timber is most useful for shorter IBD segments for which we have less confidence in the result. 
Therefore, we only apply Timber to matches with total IBD less than 90 cM. 
 
In summary, we have used our large genetic database to identify unusual matching patterns, 
and by quantifying these unusual patterns, we adjust the relationship evidence separately for 
each individual. Timber improves relationship estimates for more distant relatives, such as 5th 
or 6th cousins, by downweighting the evidence from regions that are less likely to be informative 
of close relationships. 

5. Estimating familial relationships from IBD 

5.1. Background 
As explained in section 1.1, more distantly related individuals (e.g., fifth cousins) are expected 
to inherit a smaller proportion of their genome from shared ancestors than more closely related 
individuals (e.g., first cousins). As we have also discussed, these chromosomal segments 
inherited from a common ancestor are said to be identical-by-descent (IBD). We have devoted 
much of this document to describing how we analyze an individual’s genotype to detect all IBD 
segments (greater than 8 cM) in our database in a way that balances accuracy and 
computational efficiency. 
 
The final step in our analysis is to use the amount of detected IBD between a pair of individuals, 
following the Timber adjustments described in the previous section, to estimate a pedigree 
relationship for each pair of individuals who share one or more IBD segments. More specifically, 
the objective of relationship estimation is to infer, as accurately as possible, the number of 
meioses (see Figure 5.1) separating two individuals.  
 
In Figure 5.1, we illustrate how the number of reproductive events, or number of meioses (see 
section 1.1), corresponds to a pedigree relationship. In Section A, two meioses separate two 
(full) siblings; each meiosis is indicated by a dotted line joining a child and parent in the 
pedigree diagram. In section B, the most distantly related individuals in the pedigree are a pair 
of third cousins, in which the two common ancestors are great-great-great-grandparents of the 
individual on the left and great-grandparents of the individual on the right, respectively. The two 
third cousins are separated by 8 meioses. 
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Figure 5.1. Two examples illustrate the correspondence between pedigree relationship and number of 
reproductive events (meioses). Reproductive events are indicated by dotted lines between individuals in 
the pedigree diagram. Note that only one of two parents are shown. A, shows the pedigree for two (full) 
siblings sharing the same two parents (only one parent is shown). B, shows the pedigree for a more 
extended family in which the two most distantly related individuals are third cousins.  
 
Since transmission of DNA from parents to child is inherently a random process (explained in 
section 1.1), the amount of the genome that is IBD between two siblings can vary. As the 
number of reproductive events separating two individuals increases, so does the number of 
random transmissions, leading to greater variation in the proportion of the genome that is 
inherited from common ancestors. Therefore, we face inherently more uncertainty in estimating 
more distant relationships. We explore these concepts in greater detail in the next section. 

5.2. Method for estimating relationships 
To characterize the relationship between the amount of shared IBD and number of separating 
meioses, we study IBD inferred from genotypes of individuals with known relationships. 
Although it is possible, at least in principle, to use genotypes annotated with relationships for 
this aim, this generally leads to errors in the analysis because pedigree relationships are 
recorded incorrectly on occasion. Thus, we opted to generate genotypes by simulation. That 
way, we can control the type of pedigree relationship, and ensure that we have accurate genetic 
data from a wide variety of pedigree relationships. Although simulations cannot capture the full 
complexity of the present-day human population, we attempt to make these simulations more 
realistic by generating offspring genotypes in silico from customer genotypes.  
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We simulate reproductive events from a subset of the 24,362 customer genotypes who are for 
the most part unrelated, since they were selected so that no pair of samples shares more than 
20 cM IBD (as detected using the IBD analysis described in previous sections). We draw from 
these unrelated samples at random, and without replacement, to simulate pedigree 
relationships as close as parent-child and as distant as tenth cousins. All pairs of individuals in 
this simulation share exactly two ancestors, or no ancestors; we do not consider other types of 
pedigree relationships, such as half-siblings. Once we have generated the pedigree 
relationships and genotypes for this simulation experiment, we run the algorithms described 
above to detect IBD segments in these data. 
 
The IBD distribution from this simulation experiment is summarized in Figure 5.2. (Note that 
these results are based on unadjusted IBD lengths; that is, prior to running the Timber 
algorithm. The conditional probability distributions for Timber-adjusted lengths are slightly 
different, and are not shown here.) As discussed above, we observe that the amount of IBD 
decreases, on average, for more distant relationships. We also observe greater variation in 
IBD—that is, probability distributions that span a wider range of IBD lengths—when the number 
of separating meioses is larger; note the distributions showing much greater overlap toward the 
bottom of Figure 5.2. As a result, given smaller amounts of IBD detected, we are typically more 
uncertain about the exact relationship that explains the detected IBD. 
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Figure 5.2. Distribution of total IBD, in cM, detected in pairs corresponding to different simulated pedigree 
relationships, grouped by number of separating meioses. One meiosis corresponds to parent-child 
relationships, two meioses corresponds to grandparent-child or (full) siblings, and so on. Each curve 
represents the conditional probability distribution of the number of separating meioses given total 
detected IBD. The conditional probability distributions for 10 or more separating meioses are not shown. 
Note that total IBD lengths—the vertical axis in the plot—are shown on the logarithmic scale, and only 
IBD greater than 40 cM is shown. For illustration, on the right-hand side we show intervals corresponding 
to maximum-probability relationship estimates. 
 
To illustrate the procedure for relationship estimation, on the right-hand side of Figure 5.2 we 
draw IBD intervals corresponding to the maximum-probability relationship estimate. (Note that 
the exact intervals used to estimate relationships for AncestryDNA customers may differ slightly 
from the ones shown in Figure 5.2. In addition, we incorporate other information into the 
computation of final relationship estimates; see below. Thus, these intervals are shown primarily 
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to illustrate the method.) Each of these intervals gives the number of separating meioses that is 
most likely given the amount of IBD detected in a pair of related individuals (assuming they are 
separated by fewer than 10 meioses). For a given number of meioses, the interval is extended 
across the locations on the vertical axis where the corresponding probability density curve is to 
the right of the other curves. 
 
Beyond the intervals illustrated in Figure 5.2, it is also important to consider the uncertainty in a 
particular relationship estimate. For example, consider the case when two individuals are 
estimated to share 1,000 cM IBD. According to our simulations, it is very likely that these two 
individuals are separated by exactly 4 reproductive events, such as first cousins (see Figure 
5.2). Therefore, we could report this relationship estimate with high confidence. On the other 
hand, consider the case when two individuals share 600 cM IBD. In this situation, we cannot be 
certain whether the two individuals are separated by 4 or 5 reproductive events; for example, 
they could be first cousins, or first cousins once removed. This uncertainty is accentuated for 
more distant relationships and demonstrated by the greater amount of overlap of the 
corresponding probability density curves in Figure 5.2. We account for greater uncertainty in 
more distant relationships when delivering estimates to customers by reporting a range of 
possible relationships (e.g., third to fourth cousins). 
 
Once we have made a prediction based on estimated IBD, we take an additional step to ensure 
highly accurate estimates of close relationships—specifically, pairs separated by at most 3 
meioses. Although our estimates of close relationships are already expected to be highly 
accurate based on IBD alone, additional factors not accounted for in our simulations, such as 
unusually high phasing error, can occasionally contribute to errors in our relationship estimates. 
Therefore, we take an additional step to closely re-examine matches with a significant amount 
of sharing in order to detect and correct these errors. If a match is determined to share more 
than 90cM, we scan the genome without regard to a “seed” of identical phase in order to find 
any segments that may have been missed, which results in a more accurate estimate of total 
sharing.  
 
We also measure IBD2, places where a person shares DNA with another in the same part of the 
genome on both sides of the family--i.e., there are two identical sequences of DNA at a location 
on the genome instead of just one. IBD2 can occur when people are related on both sides of the 
family, such as is the case for full siblings (where IBD2 makes up approximately 25% of the 
genome) and identical twins (where IBD2 makes up 100% of the genome). When combined with 
IBD1, the measure described in Section 3, IBD2 improves separation of close pedigree 
relationships, thereby augmenting our ability to accurately estimate these relationships. Figure 
5.3 shows the empirical distribution of two matching statistics—total detected IBD, and an 
additional statistic that provides an estimate of the proportion of the genome that is “IBD2.” With 
total IBD alone (the vertical axis in Figure 5.3), we can determine with near-perfect accuracy 
whether a pair of individuals are parent-child or full siblings. By contrast, full siblings and half 
siblings show a great deal of overlap in total IBD shared, so we cannot determine as accurately 
whether a pair of individuals are full siblings or half siblings. However, when we consider the 
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total IBD and IBD2 statistics jointly, in Figure 5.3 we observe that these data clearly separate 
parent-child pairs from full siblings, and greatly improve the separation of full siblings and half 
siblings. Therefore, by using both matching statistics simultaneously, we achieve nearly 100% 
accuracy in distinguishing close relationships—identical twins, parent-child, full siblings, and half 
siblings. 
 

 
Figure 5.3. Empirical distribution of two matching statistics in approximately 400,000 pairs (i, j), in which 
total IBD shared between i and j is greater than 1,300 cM. Each point corresponds to a pair (i, j), and is 
colored by the final relationship estimate. The vertical axis shows the shows the total detected IBD 
between i and j, in cM. The horizontal axis shows an additional matching statistic—the proportion of SNPs 
within 200-SNP segments in which the genotypes at all 200 SNPs are identical in i and j. This additional 
statistic gives an estimate of the proportion of the genome that is IBD across both haplotypes (IBD2). 
 

5.3. Estimating Number of Shared Segments 
In addition to the length of each DNA match, we also estimate the number of segments that two 
people share (commonly referred to as the number of shared segments).  Sometimes, the 
segments we find are close enough together to make it difficult to determine if the sharing 
consists of one long segment or multiple shorter ones.  Errors in the genotyping process are 
rare, but do occur many times in an individual’s data (out of hundreds of thousands of SNPs 
analyzed), which could cause a shared segment to “break” in the middle.  We therefore 
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post-process each individual match to judge whether groups of shared segments on the same 
chromosome appear to be broken by a single SNP mismatch that can be explained away as a 
genotype error. We recombine those segments for the final estimate of the number of shared 
segments for each match. 
 

6. Summary and future plans 
 
In this technical document, we have given an overview of our algorithms for phasing genotypes, 
detecting IBD, and estimating relationships in the AncestryDNA database. Our aim in 
developing these algorithms is to help AncestryDNA customers gain insight into how they are 
related to other people who have taken the AncestryDNA test. Each relationship estimate 
delivered to an AncestryDNA customer may yield a genealogical discovery. 
 
Some of the technical advances we have described here, such as accurate genotype phasing, 
have been achieved by developing algorithms that can scale to the massive amount of genetic 
data from our AncestryDNA customers. In addition, several advancements have been made 
possible by the large number of customers that have consented to share their genetic data for 
research and development of new and improved algorithms. Therefore, we expect further 
improvements in DNA matching as the AncestryDNA database grows further. 
 

Appendix A. BEAGLE genotype phasing algorithm 
pseudocode 
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Appendix B. Underdog genotype phasing algorithm 
 
Our primary aim is to learn haplotype-cluster models from large training sets and use them to 
phase samples efficiently and accurately. Here we introduce some modifications to BEAGLE so 
that the algorithm is better suited to this aim. Our new algorithm is called Underdog. 
 
BEAGLE only represents haplotypes that actually appear in the training examples. However, 
since we would like to phase new genotype samples that do not necessarily appear in the 
training set, we set the transition probability for allele a at a given SNP to  
 

 
(Eq. B1) 

 
where na is the number of times allele a is observed in training data, and nā is the number of 
times the other allele is observed. This is compared with the BEAGLE formula shown in 
Algorithm 3. Here, γ is a positive number between 0 and 1. To illustrate the rationale for this 
choice of transition probability, consider the bottom state of level 2 in Figure 2.1. Instead of 
having only one transition (to the bottom state in level 3) with 100% probability, we add a 
second transition for the blue allele (also to the bottom state in level 3) that is visited with 
probability γ. We define all transition probabilities in the haplotype-cluster model in this way. 
These transition probabilities are only noticeably different from the transition probabilities in 
BEAGLE when one allele occurs very infrequently in the training set within a given cluster of 
haplotypes. With this modification, Underdog allows for genotype phase based on haplotypes 
that did not appear in the training set. 
 
Although the BEAGLE haplotype-cluster models are intended to be parsimonious, building 
these models from hundreds of thousands of haplotypes can still yield very large models with 
millions of states, making it difficult to phase genotype samples in a reasonable amount of time. 
To address this problem, we first observe that although there is typically a large number of 
possible ways of phasing a sample, most of these possibilities are extremely unlikely 
conditioned on a specific haplotype-cluster model. In other words, most of the probability mass 
is typically concentrated on a small subset of paths through the HMM. To avoid considering all 
possible paths (which is computationally expensive), at a given level d we retain the smallest 
number of states such that the probability of being in one of those states is greater than 1 - ε. 
Even for small values of ε, this heuristic dramatically decreases the computational cost of 
sampling from the HMM, and computing the most likely phase using the Viterbi algorithm 
(Figure B1), while incurring very few additional phasing errors. 
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Figure B1: Relationship between choice of HMM parameter ε and average computation time for phasing 
a genotype sample (based on chromosome 1 only). If we set ε = 0, the average sample phasing time is 
63 seconds, and the average phasing error rate is 0.93%. For choices of ε that are larger, but not too 
large, we achieve comparable phasing accuracy with a dramatic reduction in computational expense. 
Note that the computation time here does not include file input/output, nor the time taken to merge the 
phasing results from multiple windows. 
  
The second modification we make to BEAGLE concerns the criterion for deciding whether two 
haplotype clusters (i.e., nodes of the haploid Markov model) should be merged during model 
learning (see Algorithm 4). Since the standard method is overly confident for frequencies that 
are close to 0 or 1, we regularize the estimates using a symmetric beta distribution as a prior. 
Specifically, haplotype clusters x and y are not merged unless the following condition is satisfied 
for some haplotype h: 

 
(Eq. B2) 

 
where nx and ny are the sizes of clusters x and y. The posterior allele frequency estimates in this 
formula are  
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(Eq. B3) 

 
where nx(h) and ny(h) are the numbers of haplotypes that begin with haplotype h. We set the 
parameters of the Beta prior (the prior counts), α and β, to 0.5. Compare this criterion to the one 
used in Browning (2006), (also refer to Algorithm 3), which merges two clusters unless the 
following relation holds for some h: 
 

  p  p |≥  | ˆx
(h) −  ˆy

(h) √nx
−1 + ny

−1  

(Eq. B4) 
 
where is the proportion of haplotypes in cluster x with that begin with haplotype h, and isp ˆx

(h) p ˆy
(h)  

the proportion of haplotypes in cluster y that begin with h. We evaluated the phasing accuracy of 
the algorithm using a few different values for constant C and settled on C = 20. 
 
Algorithm 4 is the modified version of BEAGLE’s procedure (Algorithm 3) that applies Eq. B2 to 
merging haplotypes during model building.  
 
For computational efficiency, on each chromosome we estimate the genotype phase within 
500-SNP windows separately. This can result in a loss of phasing accuracy at the beginning 
and end of each window because information outside the window is ignored, and therefore there 
is less information about the genotypes at the two extremities of the window. To address this 
problem, we learn haplotype-cluster models in overlapping windows; specifically, we use 
500-SNP windows in which two adjacent windows on the same chromosome overlap by 100 
SNPs. Since the final phasing estimates produced in the two windows may disagree in the 
overlapping portion, it is not immediately clear how to combine the phasing estimates from 
adjacent windows. We propose a simple solution to this problem. First, we select the SNP 
nearest the midpoint of the overlapping portion at which the genotype is heterozygous (that is, 
the two allele copies are not the same). We call this the “switch-point SNP.” We then join the 
sequences from the overlapping windows that share the same allele at this switch-point SNP. 
For example, in Figure B2 we join the top sequence in the left-hand window with the bottom 
sequence in the right-hand window because they are both estimated to carry the blue allele at 
the selected switch-point SNP. 
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Figure B2: Underdog learns haplotype-cluster models in overlapping windows. This figure illustrates how 
we obtain the final genotype phase from these overlapping windows.  
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Appendix C. The Timber IBD adjustment algorithm 
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