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Summary:

The AncestryDNA® science team has developed a fast, sophisticated, and accurate method for
estimating the historical origins of customers’ DNA going back several hundred to over 1,000
years. Our newest approach improves upon our previous version in the number of possible
regions that a customer might be assigned (from 77 to 84) as well as an increase in accuracy to
both regions assigned and the percentages assigned for each region. We have added eight new
regions and retired one older one as well as made improvements to the composition of our
reference panel, resulting in more accurate estimates overall. Given the cutting-edge nature of
this type of science, we will continue to refine our approach and improve estimates.

The basic idea behind ethnicity estimation involves comparing a customer’s DNA to the DNA of
people with long family histories in a particular region or group, what we call a reference panel,
and looking for segments of DNA that are most similar. If, for example, a section of a customer’s
DNA looks most similar to DNA in the reference panel from people from Norway, that section of
the customer’s DNA is said to be from Norway, and so on. The end result is a portrait of a
customer’s DNA made up of percentages of the 84 regions contained in the reference panel.

That is a short version of how AncestryDNA determines a customer’s ethnicity estimate. The
rest of the white paper will delve more deeply into

1. How the reference panel samples are chosen, their makeup, and how the panel is validated
2. How the algorithm that determines a customer’s genetic ethnicity works and how it is
validated



1. Introduction

Genetic ethnicity estimates that determine which populations in a reference panel are most
similar to someone’s DNA are a major component of the DNA Story provided by AncestryDNA.
As its name suggests, DNA Story provides customers with insights into their past by analyzing
their DNA.

AncestryDNA has employed a team of highly trained scientists with backgrounds in population
genetics, statistics, machine learning, and computational biology to develop a fast,
sophisticated, and accurate method for estimating genetic ethnicity for our customers. In this
document, we describe the approach we use to make those estimates. We will discuss the
development of the reference panel we compare each customer sample against, the inference
method we apply to estimate genetic ethnicity, and finally the extensive testing regimen we

employ to assess the quality of our estimates.

Glossary

Admixed — Having ancestry from multiple populations.

Allele — A variant in the DNA sequence. For example, a SNP (defined below) could have two alleles: A
or C.

Centimorgan (cM) — A unit of genetic length in the genome. Two genomic positions that are a
centimorgan apart have a 1% chance during each meiosis (the cell division that creates egg cells or
sperm) of experiencing a recombination event between them.

Chromosome — A large, inherited piece of DNA. Humans typically have 23 pairs of chromosomes with
one copy of each pair inherited from each parent.

Genome — All of someone’s genetic information; the DNA on all chromosomes

Genotype — A general term for observed genetic variation either for a single site or the whole genome.
Haplotype — A stretch of DNA along a chromosome.

Hidden Markov model (HMM) — A statistical model for determining a series of hidden states based on a
set of observations.

Locus — Alocation in the genome. It could be a single site or a larger stretch of DNA.

Microarray — a DNA microarray is a way to analyze hundreds of thousands of DNA markers all at once.
Nucleotide — DNA is composed of strings of molecules called nucleotides (also called bases). There are
four different types, and they are usually represented by their initials: A, C, G, T.

Population — A group of people.



Phasing — The assignment of DNA to contiguous segments corresponding to the DNA inherited from
Mom or Dad. This is done with an algorithm.

Recombination — Before chromosomes are passed down from parent to child, each pair of
chromosomes usually exchange long segments between one another and then are reattached in a
process called recombination.

Single nucleotide polymorphism (SNP) — A single position (nucleotide) in the genome where different
variants (alleles) are seen in different people.

2. Reference Panel

2.1 Calculating an Ethnicity Estimate

Two chromosomes from the same geographic region or the same population will share more DNA with
one another than will two chromosomes from different regions or groups. So two pieces of DNA with a
historical connection to Portugal will have more DNA in common than will a piece of DNA from Korea and
a piece of DNA from Portugal. This is the basic premise behind the ethnicity estimate AncestryDNA

provides to its members.

To create the ethnicity estimate, we compare a customer’s DNA to a panel of DNA from people with
known origins (referred to as the reference panel) and look to see which parts of the customer’s DNA are
similar to those from people represented in groups in the reference panel. If, for example, a section of a
customer’s DNA is most similar to the reference panel samples from Senegal, then we identify that

section of the customer’s DNA as coming from Senegal.

The accuracy of our ethnicity estimate depends on the quality of our reference panel. Because of this,
AncestryDNA has invested a significant amount of effort in developing the best possible set of reference

samples.
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Figure 2.1: Reference Panel Refinement Cycle. Schematic of the ethnicity estimation reference panel refinement cycle. In step 1
we select candidate reference samples from published data, the AncestryDNA customer list, and the AncestryDNA proprietary
reference collection. For AncestryDNA samples we rely on pedigree data to select those with deep ancestry from a single
population. In step 2 we filter out pieces of DNA between closely related samples from the candidate list. In step 3 we use principal
component analysis (PCA) to remove samples that show a disagreement in pedigree and genetic origin. We also use PCA to guide
the identification of population groups. In step 4 the panel is performance tested using numerous metrics and compared to the
previous release. The final result is a high-quality, well-tested reference panel. The entire procedure is cyclic, and AncestryDNA will
continue to make improvements to the panel with the goal of providing the most accurate ethnicity estimation possible with the data

available.

The rest of Section 2 describes the steps taken to develop our current reference panel, including sample
selection, quality control, and testing. The ethnicity update that we describe here is not only an update of

the reference panel from our 2021 version but also increases the number of global regions from 77 to 84.

2.2 Who should be included in the reference panel?

Identifying the best candidates for the reference panel is key to providing the most accurate ethnicity
estimate possible from a customer’s DNA sample. Under perfect circumstances, we would construct our
reference panel using DNA samples from people who lived hundreds of years ago. Unfortunately, it is not
yet possible to reliably sample historical populations in this way. Instead, we must rely on DNA samples
collected from people alive today and focus on those who can trace their ancestry to a single geographic

location or population group.



When asked to trace familial origins, most people can only reliably go back one to five generations,
making it difficult to find individuals with knowledge about more distant ancestry. This is because as we go
back in time, historical records become sparse, and the number of ancestors we have to follow doubles

with each generation.

Fortunately, knowing where someone’s recent ancestors were born is often a sufficient proxy for much
deeper ancestry. In the recent past, it was much more difficult and thus less common for people to
migrate long distances. Because of this, the birthplace of a person’s recent ancestors often represents the

location of that person’s deeper ancestral DNA.

AncestryDNA Reference Panel Candidates

In developing the most recent AncestryDNA ethnicity reference panel, we began with a candidate set of
close to 180,000 samples. First, we examined over 1,000 samples from 49 worldwide populations from a
public project called the Human Genome Diversity Project (HGDP) (Cann et al. 2002; Cavalli-Sforza
2005), over 2,800 samples from 19 populations from the 1000 Genomes Project (McVean et al., 2012),

and over 900 samples from 84 populations from the Human Origins dataset (Lazaridis et al. Nature 2014).

Second, we examined samples from a proprietary AncestryDNA reference collection as well as
AncestryDNA samples from customers who had previously consented to research. Most of the candidates
were selected from the last two groups only after their family trees confirmed that they had a long family
history in a particular region or within a particular group. A small number of candidates were selected
without a deep family tree, but these passed the rigorous vetting process outlined below. Although it was
not possible to confirm family trees for HGDP, Human Origins, and 1000 Genomes Project samples,
these datasets were explicitly designed to sample a large set of distinct population groups representing a
global picture of human genetic variation.

Reference Panel Candidates from Admixed Populations

In some parts of the world, many indigenous people also have ancestry from multiple continents. For
example, people of Amerindian descent in North and South America may also have some ancestry from
Europe and Africa. When creating reference panel regions reflecting geographic regions for the Americas
and Oceania, we wanted to use only the parts of the genome with ancestry from the indigenous
populations. We did this by looking at our previous ethnicity assignments and choosing only the segments

of DNA (or windows) where both chromosomes had assignment to an ethnicity region corresponding to


https://reich.hms.harvard.edu/sites/reich.hms.harvard.edu/files/inline-files/2014_Nature_Lazaridis_EuropeThreeAncestries.pdf

the indigenous population. So, whereas most of our regions use DNA from the entire genome of each
candidate, for regions from admixed populations we only use a fraction of each person’s genomes. The
ethnicity regions where we employ this approach are Aboriginal & Torres Strait Islander, Guam, Hawaii,
Indigenous Americas—Bolivia & Peru, Indigenous Americas—Colombia & Venezuela, Indigenous
Americas—Mexico, Indigenous Americas—North, Indigenous Americas—Yucatan Peninsula, Indigenous
Americas—Central, Indigenous Americas—Chile, Indigenous Americas—Ecuador, Indigenous
Americas—Panama & Costa Rica, Indigenous Eastern South America, Indigenous Puerto Rico, New
Zealand Maori, Samoa, and Tonga. For two other regions, Indigenous Cuba and Indigenous Haiti &
Dominican Republic, we used windows where only one chromosome had assignment to an ethnicity
region corresponding to the indigenous population. We then combined single chromosomes from two
different people in the same window. We did this to create a window homozygous for the indigenous

region assignment.

2.3 Reference Panel Quality Control

For each sample, we analyzed a set of approximately 300,000 SNPs that are shared between the Illlumina
OmniExpress platform and the lllumina HumanHap 650Y platform, which was used to genotype HGDP
samples. After samples with large amounts of missing data were removed, we filtered out those which
were likely to degrade the performance of the reference panel. Samples were typically removed because
they were closely related to another reference sample or the underlying genetic information about a

sample’s origins disagreed with the family tree data.

When we perform genetic ethnicity estimation, we are interested in computing the probability that a
particular segment of DNA, an observed haplotype, is most similar to a region in the reference panel (see
Section 4 below). The regions in the reference panel can provide clues as to where someone’s ancestors

are from, although they do not always directly indicate a person’s ancestral origins.

To compute the probability a haplotype is most similar to a reference panel population, we need to
estimate the frequency of this haplotype in each population. This requires that people in the reference
panel not be closely related. DNA segments shared as a result of recent ancestry, as identified through
identity by descent (IBD), do not represent independent haplotypes in a population. Retaining these
shared segments can distort the estimates of haplotype frequencies in a population. To avoid this bias, we

remove shared segments for candidates that share more than 20 cM of IBD DNA. Details about our



approach for detecting shared segments of IBD DNA can be found in our AncestryDNA Matching White
Paper.

Next, we remove samples from the reference panel candidate set when the genetic data about ethnicity
disagrees with what that person has reported about their ethnicity—when underlying genetic information
disagrees with the pedigree data. We identify these outliers using two approaches: (1) we identify clear
outliers using our previous ethnicity estimate version, and (2) we use principal component analysis (PCA).
PCA is frequently used for exploratory data analysis in population genetics research (Jackson 2003).
When applied correctly to genotype data, PCA can capture the genetic variation separating distinct

populations (Patterson 2006).

We apply PCA to the samples that have made it through the previous screening processes and plot the
early stages of the analysis, the “first four principal components,” as a series of scatter plots. We color
each sample by its country of origin, determined by pedigree for Ancestry samples and by sample label

for public samples (see Figure 3.3).
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Figure 2.2: PCA Analysis on European Panel Candidates. Scatter plot of the first two components from a principal component
analysis (PCA) of candidate European samples for the AncestryDNA reference panel. Visual inspection of PCA is useful for
numerous aspects of data QC. First, it can be used to identify individual outliers, such as the Italian samples (green squares) that
appear near the Portugal and Spain (yellow and blue triangles, respectively) cluster. It can also be useful for identifying poor sample
grouping. Finally, it can reveal regions where there is limited genetic separation and clusters overlap (e.g., England, Ireland, Wales,

and Scotland clusters) and regions that can be further subdivided.

Each population tends to form a cluster of points (each point is a sample) in the scatter plot. This is
because points that are more genetically similar are closer in PCA space. Helpfully, these clusters of
points tend to match geography as well because most people are genetically more similar to others from
nearby. Furthermore, these plots quickly reveal outlier samples that are not near other samples from the
same population. For example, the green squares near the yellow and blue triangles indicate samples

with family trees from Italy whose DNA is more similar to people from Portugal and Spain. These are



examples where the specified population of origin disagrees with the genetic origin represented in PCA
space. We also use a related approach called UMAP (Uniform Manifold Approximation and Projection) to

visualize population structure and identify outliers (Diaz-Papkovich 2019).

We visually inspect candidates for removal based on a scatterplot like the one in Figure 2.2. Because
different collections of samples reveal different amounts of population structure, PCA and outlier removal
are repeated for different subsets of data. We first remove outliers at the global level (all samples
together), then at the continental level (e.g., outliers in a PCA using only European samples), then at the
regional level (e.g., outliers in a PCA of all Scandinavian samples), and finally at the population level (e.g.,

outliers from a PCA of Norway).

2.4 lterative Reference Panel Refinement

After removing PCA outliers, we divide our global reference panel into populations corresponding to
distinct genetic clusters in the PCA plots. Before using the reference set to estimate ethnicities of
AncestryDNA customers, we first determine its quality by measuring the performance of our ethnicity
estimation on the reference set itself. How well does our ethnicity estimation do on samples that by
definition are 100% of a single ethnicity?

To do this, we remove 5% of samples from the reference panel and estimate their ethnicity using the
remaining 95% of samples as the new reference panel. We repeat this process 20 times, each time
removing a different 5% of the panel and estimating their genetic ethnicities using the remaining 95%. We
then look at the average predicted ethnicity for samples from each region in the reference set using the
results of these cross-validation experiments. Figure 2.3 shows the results of this experiment as box
plots.
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Figure 2.3: 20-fold cross-validation analysis of the Ethnicity 2022 reference panel. Here we plot the results of an experiment in
which 5% of samples are removed from the reference panel, and their ethnicity is estimated using the remaining (95%) panel
samples. Each boxplot represents the distribution of estimated ethnicity for all samples from a given region (75%, 50%, and 25%
percentiles of estimated ethnicity). For the majority of samples in each region, we predict on average 86.0%of the genetic ethnicity
to be from the correct region. And for the most part, the other 14.0% comes from nearby regions. However, there are exceptions. In
particular, our average prediction accuracy for samples for Indigenous Cuba and Burusho are not quite as high. There are many
factors affecting the accuracy of these numbers, most importantly the number of reference samples in the panel for each region and

the genetic distinctness of each region.

The purpose of this analysis is twofold. First, reference panel samples with extremely poor performance in
the cross-validation analysis are removed, as they may poorly represent their ethnic group of origin.
Second, the cross-validation experiments allow us to demonstrate our ability to accurately estimate the
ethnicities of our reference panel samples using our ethnicity estimation method (see section 3) and thus
help us redefine population boundaries. For example, we may merge two populations if performance in

the cross-validation experiment is poor in each group but is found to be better in a merged group.

After performing several rounds of reference panel refinement based on cross-validation experiments, we
settled on dividing our latest reference panel into 84 global regions. These regions are described in
further detail below.

2.5 Updated Reference Panel

The updated AncestryDNA ethnicity estimation reference panel contains 68,714 samples carefully
selected as described above to represent 84 global regions (Table 2.1), each with a unique genetic

profile. As a comparison, our previous panel of 56,580 samples represented 77 distinct global regions.

Table 2.1: The Final AncestryDNA 2022 Ethnicity Reference Panel

Region Number of samples
Aboriginal & Torres Strait Islander 55
Aegean Islands 674
Anatolia & the Caucasus 365
Arabian Peninsula 154




Baltics 233
Basque 118
Bengal 263
Benin & Togo 336
Burusho 23
Cameroon, Congo & Western Bantu Peoples 522
Central & Eastern China 358
Central Asia—South 610
Cyprus 262
Dai 90
Eastern Bantu Peoples 177
Eastern Europe & Russia 1705
Egypt 303
England & Northwestern Europe 2388
Ethiopia & Eritrea 121
Finland 357
France 5471
Germanic Europe 3382
Greece & Albania 598
Guam 157
Hawaii 392
Indigenous Americas—Bolivia & Peru 263
Indigenous Americas—Colombia & Venezuela 3127
Indigenous Americas—Mexico 568
Indigenous Americas—North 1988
Indigenous Americas—Yucatan Peninsula 307
Indigenous Americas—Central 1919
Indigenous Americas—Chile 469
Indigenous Americas—Ecuador 652
Indigenous Americas—Panama & Costa Rica 438
Indigenous Arctic 36
Indigenous Cuba 9034
Indigenous Eastern South America 2807




Indigenous Haiti & Dominican Republic

1860

Indigenous Puerto Rico 3872
Iran/Persia 1055
Ireland 783
Ivory Coast & Ghana 315
Japan 152
Jewish Peoples of Europe 447
Khoisan, Aka & Mbuti Peoples 38
Korea 277
Levant 225
Mali 536
Malta 91
Melanesia 66
Mongolia & Central Asia—North 696
Nepal & the Himalayan Foothills 399
New Zealand Maori 206
Nigeria 593
Nigeria—East Central 471
Nilotic Peoples 233
Northern Africa 347
Northern Asia 41
Northern China 280
Northern India 803
Northern ltaly 1048
Northern Philippines 301
Norway 807
Portugal 1213
Samoa 91
Sardinia 70
Scotland 1845
Senegal 186
Somalia 43
Southeast Asia 541




Southern Bantu Peoples 210
Southern China 276
Southern India 109
Southern ltaly 1475
Southern Japanese Islands 79
Southern Philippines 468
Southwestern China 266
Spain 970
Sweden & Denmark 1275
The Balkans 1441
Tibetan Peoples 200
Tonga 164
Vietnam 245
Wales 883
Total 68,714

We discuss more detailed tests of the performance of the 2022 ethnicity reference panel in Section 4. For

details of the method AncestryDNA uses for genetic ethnicity estimation, see Section 3.

3. AncestryDNA Ethnicity Estimation

3.1 Introduction

After establishing and validating the reference panel, the next step is to estimate a customer’s ethnicity by
comparing nearly 300,000 selected single nucleotide polymorphisms (SNPs) from their DNA to those of
the reference panel. We assume that an individual’'s DNA is a mixture of DNA from some combination of
the 84 populations represented in the reference panel. One example mixture is illustrated in Figure 3.1,
where, because of recombination, a customer inherits stretches of DNA from his or her four grandparents
who, in this example, each come from four “single source” reference populations.



Because DNA is passed down from one generation to the next in long segments, it is likely that the DNA
at two nearby loci in the genome were inherited from the same person and so the same population (for
more details on DNA inheritance see our DNA Matching White Paper). This means we can get more
accurate results by looking at multiple nearby SNPs together as a group, or haplotype, instead of looking
at each SNP in isolation. Our method takes advantage of this to greatly improve our estimates.

Our approach for estimating a customer's genetic ethnicity assumes that each segment of their genome
comes from one of the 84 populations in the reference panel. We divide the customer’s genome into
1,001 windows, and our approach assumes that the DNA inherited from each parent in each window
comes from exactly one population (the windows are small enough that this will almost always be true).
We compare the customer's DNA to that of our reference panel in each window, and combine information
from all the windows to estimate what overall portion of the customer’s genome came from each
population using a hidden Markov model (HMM), described in Sections 3.3-3.5 below.

Customer’s grandparents

I l Customer’s genome

Customer's
parents

———7——-
|

Figure 3.1: Inheritance of DNA from different populations. On the left, we present a three-generation genetic family tree. For

each individual, we show two vertical bars representing the two copies of a single chromosome present in each individual. These


https://www.ancestrycdn.com/support/us/2020/08/matchingwhitepaper.pdf

bars are colored to show the reference population from which they inherited their DNA. Each of the four grandparents (solid bars,
top row) has inherited 100% of their DNA from a single population that is different from the other three. The DNA is passed forward
to the parents and finally to the customer, who, through the process of recombination and assortment, ends up inheriting a shuffled
set of chromosomes from each parent. The colors show that the customer’s DNA is a mixture of the DNA inherited from their four
grandparents, with long stretches inherited from the same grandparent. On the right, we show that to obtain a customer’s ethnicity
estimate, we divide the customer’s genome into small windows (represented by black horizontal lines). For each window we assign
a single population to the DNA within that window inherited from each parent, one population for each parental haplotype. Each

window gets a population assignment based on how well it matches genomes in the reference panel.

3.2 Phasing SNP Data

At AncestryDNA, we use microarrays to obtain DNA data from customer samples. We look at
approximately 700,000 individual locations of DNA (SNPs) on chromosomes 1-22 and the X chromosome
and determine the nucleotides at each position. It is important to understand that every person inherits
two alleles, one from each parent, at each of these 700,000 sites. For example, we may see anAanda T
at position 1, a G and a G at position 2, and so on. A crucial step in ethnicity estimation is to separate
which letters were inherited from different parents—a process called phasing. We use a new technology
we call SideView™ to separate DNA inherited from each parent across the entire genome. When
separated, we can estimate the genetic ethnicity of DNA inherited from each parent individually and

independently using the 290,000 SNPs that are shared with all members of the reference panel.

SideView™ uses DNA shared with distant relatives across the genome to aid in the phasing. The
correctness of the DNA phasing for an individual therefore relies, in part, on that person sharing enough
DNA with other people in our database. Since this is not always the case, we design the hidden Markov
model (HMM) we use for ethnicity estimation to allow for incorrect phasing, although doing so complicates
the model significantly. In the next section, we explain how an HMM is useful in ethnicity estimation, first
with a model to analyze one parent individually, and then we show how we extend that model to account

for phase error.

3.3 Principles of a Hidden Markov Model

Our goal is to assign one of the populations from our reference panel to each window of the genome and
to each parent (i.e., the DNA a customer inherited from each parent). A hidden Markov model is
well-suited for this task because its strength is that it can represent thousands of interrelated variables but
still perform efficient inference, using a technique called dynamic programming, as long as each variable

depends on only a few others. An HMM is a set of states and fransitions connected as a directed acyclic



graph (the transitions move forward along the genome and never cycle back). Each transition is
associated with a probability, and each state has an emission probability, which allows the HMM to
compute the posterior probability (i.e., taking all populations and windows into account) of individual
states, individual transitions, and paths through the model. Figure 3.2 illustrates an HMM representing the
DNA inherited from one parent for three reference populations (represented by green, yellow, and red)
and six windows (our complete analysis uses 84 populations and 1,001 windows). It also shows a path
through the model (the thick blue transitions). We use HMMs to infer the most likely path (called the
Viterbi path), which assigns exactly one population to each window of the genome. We also use HMMs to
take path samples—alternative paths that are also likely—to get a better idea of how much the

assignment to each population might vary according to the model.

Corresponding Window:
1 2 3 4 5 6
Start
State

Figure 3.2: The states and transitions of an HMM representing the possible populations that explain the DNA inherited from
one parent in each of several windows. This illustration includes three populations (green, yellow, and red), and six windows. The
arrows represent transitions between states, and each transition will have an associated probability. By using the transition
probabilities, an HMM can compute the likelihood of each of these states and determine the most likely path through the model

(illustrated by the bold blue arrows), which assigns one population to each window across the genome.

The transition probabilities in this HMM depend on how often a population assignment should change,
and, when they do change, how likely is the new population to be chosen. A transition to the same
population is generally more probable in our model (for the reasons stated above: the population that
explains the DNA inherited from a parent is likely to be the same for several consecutive windows).
However, the number of populations varies from person to person. Our HMM learns the probability of
changing population states from the genotype data. When a transition does change populations, the
transition probability depends also on the proportion throughout the genome of the population being

transitioned to, which our approach also learns for each individual person.

The state emission probabilities in this HMM depend on the similarity between the DNA inherited from the



parent and that of a reference panel corresponding to the population the state represents. We describe

how we measure this similarity in Section 3.4 below.

3.4 Emission Probabilities

Determining how likely the DNA in a window came from a population (the emission probability) is a

complicated process and is described in more detail in our paper Ancestry Inference Using Reference
Labeled Clusters of Haplotypes.

Briefly, our approach includes the following steps:

l. Create haplotype models for each window. Using an ethnically-diverse set of about 50,000
individuals, we infer BEAGLE (Browning 2007) haplotype cluster models for each window.

II.  Annotate the reference panel. The states in the BEAGLE models represent clusters of similar
haplotypes. We wish to associate those clusters with populations. Because we are confident in
the geographic origin of members of the reference panel, we are able to calculate the probability
that a haplotype from a given population is represented by a particular haplotype cluster.

[I. Assign haplotype clusters to the test sample and aggregate the annotations. Given a
phased customer genotype, we observe which haplotype clusters the genotype belongs to and
base the emission probabilities for a population on the weighted average annotation (how often
the population reference panel belongs to the haplotype cluster, weighted so that each SNP in the

window contributes equally).

HMMs are used in a number of existing approaches for estimating ancestral proportions (Maples 2013).
The key part of our method is step Ill, where we use rich haplotype models in each window, annotated
with population labels from the haplotypes in our reference panel, to assign a likelihood over all
population labels to the haplotypes in our test sample. It is worth noting that our method lends itself to
high-throughput ethnicity estimation, as steps (l) through (lll) above—learning the haplotype models from
a large training set and then annotating them with the reference panel populations—need only be carried

out once.

3.5 Accounting for Phase Error

We use the HMM described above (Figure 3.2) to identify populations whose probability of assignment is

virtually zero for one parent or the other, and we remove those from further consideration, but our final


https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-021-04350-x
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-021-04350-x

estimates are based on a more complicated HMM that simultaneously explains both haplotypes inherited
from the parents. We need this more complicated model because we cannot be certain that every
genome is completely separated into DNA inherited from each parent, since SideView™ cannot phase in

places where an individual has no DNA matches.

ELEEEE H]E]UHIIMIIIW

Figure 3.3: State transitions in an HMM representing K=3 populations. The HMM we use in practice explains the DNA inherited
from both parents simultaneously. This figure illustrates the states in a model with the same three (green, yellow, red) populations as
the HMM in Figure 3.2. There are KxKx2 states in each window. Each state represents the population inherited from parent 1 (top

color of each state), parent 2 (middle), and whether or not parent 1 corresponds to haplotype 1 (bottom). Only one state is shown on



the left, and possible transitions to all states in the next window (right). We only consider states such that the DNA inherited from at

least one parent keeps the same population assignment.

Figure 3.3 shows the set of states necessary for the HMM we use. Each state represents the population
that explains the DNA inherited from both parents, and we also assign one parent to haplotype 1 in the
phased data, and the other parent to haplotype 2, and allow those phase assignments to change from
window to window. The resulting HMM has many more states, and each state represents the population
that explains parent #1's DNA (K possible values, if there are K populations), the population that explains
parent #2's DNA (K possible values), and which haplotype corresponds to which parent (2 possible
values). The HMM has KxKx2 states for each genomic window and all possible transitions between them
such that, at most, one parent's state changes population. While the constraint to one parent changing
populations is consistent with biology—recombination events in different parents are independent—it is
put in place mostly for practical reasons of efficient inference. The transition probability in this HMM
(Figure 3.3) depends on two additional variables; the probability of changing phase from window to

window and the probability of changing back. These values are also learned for each individual.

The parameters of the HMM are set based on several iterations of an expectation-maximization algorithm
based on a standard HMM learning approach called Baum-Welch. For each individual, the algorithm
learns (i) the probability of changing populations (for each parent), (ii) the overall distribution of population
assignments (for each parent), (iii) the probability of changing phase (and changing back). The emission
probabilities for each state are fixed throughout the process. Although the model allows for phase error,
the model most often learns that the optimal estimate includes no phase corrections, and therefore the
estimates for most Ancestry DNA customers are based on the SideView™ phase and parent assignments

exactly.

After learning, we are able to compute through our HMM model:

1. The Viterbi path through the model. This is the single most likely path, according to the
parameters of the model, which assigns one population to the DNA inherited from each parent in
each window of the genome.

2. Probabilistic path samples through the model. These paths also assign one population to each
parent in each window, and they are only slightly less likely (according to the model) than the
Viterbi path, so they help describe how much or how little of a given population may still be

consistent with the individual's DNA.



We report the sum population assignment for each parent according to the most likely path and report a
most probable range based on 1,000 path samples taken from the model. These ranges are adjusted

based on how well path samples perform on test data (see Section 4.4).

4, Assessing Ethnicity Estimation Performance

After developing and optimizing both the estimation process and the reference panel, the final
step is to determine how well they perform together at assigning ethnicity. Basically, we see how
close our process gets to the right answer through rigorous testing using a wide variety of test
cases with known ethnicity.

4.1 Cross-Validation

We evaluate the performance of the ethnicity estimation process by running it on two different
test cases where we know what the correct answer should be: single-origin individuals
(including synthetic single-origin individuals) from the reference panel and synthetic individuals
with mixed ethnicities. We gauge its effectiveness by seeing how close we get to the true
ethnicity.

Single-origin individuals: We use two different sets of single-origin individuals in our
cross-validation studies. The first are those for whom we utilize their entire genome as a
reference for a particular region. These people have a long family history in a single region and
represent a typical person from that region. By definition, these individuals in our reference
panel each have 100% of a single ethnicity.

This approach does not work for the reference panel regions where we used the indigenous
DNA of admixed individuals. For these reference panel regions, primarily from the Americas and
Oceania, we created synthetic single-origin individuals by piecing together genotype sequences
that represented indigenous ancestry from multiple individuals. These synthetic single-origin
individuals are then used to evaluate the accuracy of our method.

We evaluate our process by running 20-fold cross-validation experiments using these
single-origin individuals from our reference panel. For example, if we had 100 people in each
reference panel group, we would take 5 from each of the 84 groups and run the algorithm on
these 385 samples using the remaining 7,315 individuals as the reference group. Then a
different 5 would be taken from each group and the process repeated 20 times so that every
individual in the reference panel is tested.



Overall we observe that the updated process correctly assigns an average of 87.7% of the
genetic ethnicity to the correct region for single-origin individuals from our reference panel
(Figure 2.3). We predicted greater than 97% of the genetic ethnicity from the correct region for
the following groups:

Aboriginal & Torres Strait Islander
Cameroon, Congo & Western Bantu Peoples
Guam

Indigenous Americas—Bolivia & Peru
Indigenous Americas—Colombia & Venezuela
Indigenous Americas—Mexico

Indigenous Americas—North

Indigenous Americas—Yucatan Peninsula
Indigenous Americas—Chile

Indigenous Americas—Ecuador

Indigenous Americas—Panama & Costa Rica
Indigenous Arctic

Indigenous Cuba

Indigenous Eastern South America
Indigenous Haiti & Dominican Republic
Indigenous Puerto Rico

Jewish Peoples of Europe

Mali

Melanesia

Nigeria—East Central

Southern Bantu Peoples

Tibetan Peoples

For some regions, such as Bengal and France, the numbers are not as high, with average
assignments of 56% and 58% to the correct region, respectively. However, even if the prediction
accuracy falls short of 100% for some regions, the remaining ethnicity is still assigned to nearby
regions. For example, individuals from Bengal might get some assignments to Southern India,
and individuals from France might get some level of assignment to England & Northwestern
Europe (see Figure 4.1)
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Figure 4.1: Average estimated ethnicities for single-origin individuals from each population. In this graph, each row
represents single-origin individuals from the population listed. Each column represents each of the possible 84 ethnicities that the
single-origin individual might be assigned to. The graph is set up such that the matching individual and his or her ethnicity are
aligned along the diagonal line. If the algorithm worked perfectly, there would be only red boxes along the diagonal—red represents
100% origin from that population. Any boxes that are not on the diagonal represent misassigned populations. This graph also shows
that certain ethnicities can be confounded by other ethnicities. For example, individuals with 100% Germanic Europe ethnicity can
be assigned to England & Northwestern Europe and Sweden & Denmark.

Synthetic individuals with mixed ethnicities: We also evaluated the accuracy of ethnicity
estimates for “synthetic” individuals of mixed ethnicity origins. These test cases are simulations
we construct with known mixtures of ethnicities. Each synthetically admixed individual can have
as few as 2 or as many as 32 ethnicity regions, with various proportions. Since the true ethnicity
proportions are known, we can calculate precision and recall for each ethnicity region. Precision
and recall are two important factors in evaluating our estimation process.



Precision can be thought of as how much of the reported ethnicity is true. For example, if our
process predicts an individual has 40% Northern Africa, but only 30% really is, then the process
has a precision of 0.75 for Northern Africa ethnicity. Mathematically, precision is expressed as
the amount of correctly identified ethnicity divided by the estimated value for that region.

Recall can be thought of as how much of the true ethnicity is called by the process. Keeping
with our Northern Africa ethnicity, imagine that an individual has 50% Northern Africa ancestry,
but the algorithm predicts 40%. In this case, the process has a recall of 0.8 for Northern Africa
ethnicity.

With SideView™ technology we can also calculate the precision and recall for attributing
ethnicity regions to each side of your family tree (ethnicity inheritance). For example, if our
process predicts that an individual inherited 100% of their total Northern Africa ancestry from
one side of their family, when in reality they inherited 70% from one side and 30% from the other
side, the ethnicity inheritance precision would be calculated as 0.7.

Table 4.2 : Precision/Recall for each region calculated from ethnicity estimates of synthetic individuals

with mixed ethnicities.

Ethnicity Ethnicity

Inheritance [Inheritance
Region Precision [Recall [Precision |Recall
Aboriginal & Torres Strait Islander 0.98 0.98 0.98 0.99
Aegean Islands 0.76 0.68 0.74 0.67
Anatolia & the Caucasus 0.6 0.77 0.59 0.76
Arabian Peninsula 0.82 0.92 0.82 0.91
Baltics 0.41 0.86 0.4 0.84
Basque 0.38 0.92 0.38 0.92
Bengal 0.92 0.55 0.91 0.55
Benin & Togo 0.75 0.9 0.75 0.9
Burusho 0.96 0.66 0.96 0.65
Cameroon, Congo & Western Bantu Peoples 0.92 0.98 0.92 0.97
Central & Eastern China 0.73 0.78 0.72 0.77
Central Asia—South 0.87 0.77 0.87 0.76
Cyprus 0.72 0.89 0.71 0.89
Dai 0.41 0.93 0.41 0.92
Eastern Bantu Peoples 0.88 0.87 0.88 0.87




Eastern Europe & Russia 0.75 0.83 0.74 0.81
Egypt 0.98 0.75 0.97 0.74
England & Northwestern Europe 0.54 0.72 0.5 0.67
Ethiopia & Eritrea 0.82 0.95 0.82 0.95
Finland 0.74 0.96 0.73 0.96
France 0.93 0.53 0.9 0.52
Germanic Europe 0.84 0.66 0.8 0.64
Greece & Albania 0.68 0.83 0.67 0.82
Guam 0.98 0.98 0.98 0.98
Hawaii 0.91 0.89 0.91 0.88
Indigenous Americas—Bolivia & Peru 0.93 0.99 0.93 0.98
Indigenous Americas—Colombia & Venezuela 0.98 0.98 0.98 0.98
Indigenous Americas—Mexico 0.96 0.97 0.95 0.97
Indigenous Americas—North 0.97 0.99 0.97 0.99
Indigenous Americas—Yucatan Peninsula 0.86 0.97 0.86 0.97
Indigenous Americas—Central 0.99 0.9 0.99 0.91
Indigenous Americas—Chile 0.98 0.97 0.98 0.97
Indigenous Americas—Ecuador 0.98 0.96 0.98 0.96
Indigenous Americas—Panama & Costa Rica 0.91 0.96 0.91 0.96
Indigenous Arctic 0.97 0.99 0.97 0.99
Indigenous Cuba 0.99 0.98 0.99 0.98
Indigenous Eastern South America 0.98 0.98 0.97 0.97
Indigenous Haiti & Dominican Republic 0.98 0.99 0.99 0.99
Indigenous Puerto Rico 0.95 0.98 0.95 0.99
Iran/Persia 0.95 0.78 0.94 0.77
Ireland 0.48 0.96 0.47 0.94
Ivory Coast & Ghana 0.87 0.72 0.87 0.72
Japan 0.88 0.91 0.87 0.91
Jewish Peoples of Europe 0.93 0.98 0.93 0.98
Khoisan, Aka & Mbuti Peoples 0.85 0.97 0.85 0.97
Korea 0.75 0.95 0.74 0.94
Levant 0.63 0.87 0.62 0.87
Mali 0.91 0.97 0.91 0.97




Malta 0.9 0.92 0.9 0.91
Melanesia 0.98 0.97 0.98 0.98
Mongolia & Central Asia—North 0.99 0.76 0.98 0.75
Nepal & the Himalayan Foothills 0.98 0.89 0.97 0.88
New Zealand Maori 0.77 0.84 0.77 0.83
Nigeria 0.94 0.9 0.93 0.9
Nigeria—East Central 0.96 0.97 0.96 0.97
Nilotic Peoples 0.93 0.87 0.93 0.87
Northern Africa 0.9 0.9 0.89 0.9
Northern Asia 0.31 0.8 0.31 0.8
Northern China 0.74 0.72 0.73 0.71
Northern India 0.79 0.73 0.78 0.72
Northern Italy 0.8 0.68 0.78 0.67
Northern Philippines 0.85 0.79 0.85 0.79
Norway 0.64 0.91 0.63 0.89
Portugal 0.93 0.81 0.92 0.8
Samoa 0.91 0.93 0.91 0.93
Sardinia 0.69 0.91 0.68 0.9
Scotland 0.61 0.83 0.58 0.79
Senegal 0.89 0.96 0.89 0.96
Somalia 0.9 0.91 0.9 0.91
Southeast Asia 0.99 0.66 0.98 0.66
Southern Bantu Peoples 0.93 0.98 0.93 0.98
Southern China 0.75 0.86 0.74 0.86
Southern India 0.3 0.94 0.3 0.94
Southern ltaly 0.94 0.7 0.93 0.69
Southern Japanese Islands 0.84 0.95 0.84 0.95
Southern Philippines 0.87 0.89 0.87 0.89
Southwestern China 0.9 0.76 0.89 0.76
Spain 0.83 0.62 0.82 0.61
Sweden & Denmark 0.56 0.83 0.54 0.8
The Balkans 0.91 0.67 0.9 0.66
Tibetan Peoples 0.87 0.97 0.87 0.97




Tonga 0.94 0.95 0.94 0.94
Vietnam 0.76 0.88 0.76 0.88
Wales 0.67 0.93 0.65 0.91

We found that the majority of our ethnicity regions have precision and recall that are both
greater than 0.77. The following regions have both precision and recall exceeding 0.9:

Aboriginal & Torres Strait Islander
Cameroon, Congo & Western Bantu Peoples
Guam

Indigenous Americas—Bolivia & Peru
Indigenous Americas—Colombia & Venezuela
Indigenous Americas—Mexico

Indigenous Americas—North

Indigenous Americas—Central

Indigenous Americas—Chile

Indigenous Americas—Ecuador

Indigenous Americas—Panama & Costa Rica
Indigenous Arctic

Indigenous Cuba

Indigenous Eastern South America
Indigenous Haiti & Dominican Republic
Indigenous Puerto Rico

Jewish Peoples of Europe

Mali

Malta

Melanesia
Nigeria—East Central
Northern Africa

Samoa

Southern Bantu Peoples
Tonga

Some regions, such as France and Bengal, have relatively lower recall, 0.53 and 0.55
respectively. Some regions have relatively low precision, such as Southern India (0.30),
Northern Asia (0.31), Basque (0.38), Dai (0.41), and Baltics (0.41).

Ethnicity inheritance precision and recall are slightly lower on average when compared with
precision and recall when both sides of the genome are considered together, 82.1 vs 82.7 and



86.2 vs 86.1 respectively. This is because there will always be some additional error when trying
to estimate which side of your family tree you inherited a particular ethnicity region from. In
general, parsing your inheritance patterns by one side of your family tree versus the other is a
more difficult problem than when both sides of the tree are considered together.

4.2 Region Assessment

To assess how our regions perform in different parts of the world and to help our customers interpret their
results, we can look at the ethnicity estimates of people with deep genealogical roots back to the same
country or part of a country who are not included in our reference panel. To find these individuals, we use
customer-created family trees and look for customers who have consented to research and have all of
their ancestors from the same country. Ideally, we’d only look at people with all of their grandparents (or
older) from the same country, but due to low numbers for some countries we sometimes include people

where only their parents are from the same country.

Customers who are not in the reference panel and have deep trees tracing back to a single country are
expected to have high assignments to the regions associated with that country, and this is what we
generally find. For example, Figure 4.3A shows the average ethnicity assignments for 200 customers with
all four grandparents (or older) born in Germany. As you can see, while most of their assignment is to the
Germanic Europe region, other regions do appear in small but significant amounts. Figure 4.3B shows a
similar pattern for 200 customers with all four grandparents born in Korea. These analyses help ensure

that ethnicity estimates for people from a region agree with expectations.
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Figure 4.3 Average ethnicity assignments based on grandparents’ birth location. Average ethnicity assignments for customers

with all four grandparents born in the same country. (A) Germany, (B) South Korea

We also use maps like the one shown in Figure 4.4 to ensure that ethnicity estimates make sense

geographically. The geographic distribution and amount of ethnicity estimates within a country can often

help make sense of otherwise surprising results. For example, in Figure 4.4 there is assignment to the

Scotland region in the Brittany area of France. This makes sense because of shared Celtic ancestry in



both Scotland and Brittany, where the Celtic language Breton is traditionally spoken. Scotland estimates

in England also likely reflect the history of Celtic ancestry in that area.

% assignment

95%

75%

50%

25%

5%

Figure 4.4 Map of average Scotland estimates. Average estimates between 5% and 25% (darker blue) in Wales, England, and

Ireland and between 25% and 50% (light blue) in Brittany likely reflect shared Celtic ancestry.

These analyses help us understand the genetic diversity of the regions and allow us to better
communicate these results to our customers (e.g., even if all of a customer’s ancestors are German, the
customer can expect to see additional regions in their ethnicity estimate). These analyses also aid us in

prioritizing future developments for further ethnicity estimation updates.



4.3 Regional Polygon Construction

We divide the world into 84 regions in our reference panel. Each region represents a population or group
of related populations with a unique genetic profile reflecting their shared ancestry. Where possible, we
use the known geographic locations of our samples to guide how we create the regions. Figure 4.5 shows
an example of the ethnicity estimate and geographic information used to define the polygon for our
England & Northwestern Europe region.
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Figure 4.5: Using geographical sample locations to draw regional polygons. Panel A shows the distribution of the England &
Northwestern Europe ethnicity predicted for a set of samples with geographic information. Samples are assigned to grids of 0.5
degrees longitude by 0.5 degrees latitude based on the average birth location of their ancestors’ grandparents. The color of each
grid squarepoint on the map represents the average England & Northwestern Europe ethnicity of samples from each grid. Panel B

shows the maps after filling in missing regions and smoothing the results. Panel C shows the information processed with smoothing,



creating the outlines representing the ancestry regions shown to customers. Panel D shows the final product version after manual

touch-ups.

In Figure 4.5A, we show the amount of our England & Northwestern Europe ethnicity region assigned to a
combination of reference panel samples, customers with deep roots from the same country, and
noncustomer samples. Figure 4.5B shows the results after imputing values to fill in gaps and applying
smoothing methods to make the plot less spotty. It is clear from the plot that there is a gradient of ethnicity
in this area that is centered in England that quickly tapers off in surrounding areas. For example, the next
level of concentration, represented by light blue in the image, is in northeastern France, Belgium, the
Netherlands, and Switzerland. The ethnicity gradient continues to diminish as represented in purple, with

the borders reaching as far away as Northern Italy, Norway, and Portugal.

Manual edits are sometimes performed on polygons to better align them with geography like narrow
peninsulas or when the polygons may imply finer-scale population structure than the underlying genetic
data support. For example, the >25% polygon for the England & Northwestern Europe region on our
website (Figure 4.5D) connects the separate polygons in France and Switzerland seen in Figure 4.5C.
Additionally, polygons representing two of our ethnicity regions—Jewish Peoples of Europe and Khoisan,
Aka & Mbuti Peoples—have hand-drawn components to describe minority populations that may not be

explicitly defined by geography.

Importantly, these maps do not represent where we think a customer’s ancestors may be from. Instead,
the polygons broadly show how much assignment to each region is typically seen among people with
deep roots from a given location. Polygons can be thought of as an extension of the region name but can
more easily provide information than words alone. The polygons appear as nested zones with increasing
depth of shading representing differences in the average level of ethnicity assignment. Each set of

polygons is accompanied by a summary of the history of the region.

The map below shows polygons for all 84 ethnic groups mostly based on the polygons with 50% or more

assignment, constructed as described above.



Figure 4.6: Map of 84 ethnicity region polygons.

4.4 Reporting uncertainty of estimated values

Ethnicity estimates are not an exact science. The percentage AncestryDNA reports to a customer is the
most likely percentage within a range of percentages. In this section, we discuss how we calculate this
range. It is important to keep in mind that here at AncestryDNA we continue to build upon our previous

work to offer ever more accurate results to our customers.

For example, we might report someone as 40% England & Northwestern Europe with a confidence range
of 30-60%. This means that they are most likely 40% England & Northwestern Europe but they could be
anywhere between 30% and 60% England & Northwestern Europe.

As discussed in Section 3, we run a genome-wide Viterbi estimate on a customer’s DNA sample and
report that back as the customer’s most likely ethnicity estimate. In addition to the Viterbi estimate, we are
able to sample other ethnicity estimates that, while themselves likely, are not guaranteed to be the most
likely estimates. The ethnicity range estimates we report are based on 1,000 samples of these non-Viterbi

ethnicity estimates and correspond to the degree of uncertainty around the true ethnicity estimate. For



example, if a window has an 80% chance of being from England & Northwestern Europe, then it has a
20% chance of being from some other region. The confidence range captures the uncertainty in the

ethnicity estimate across a customer’s DNA.

We devised a way, using the mean and standard deviation of 1,000 sampled ethnicity estimates, to
estimate the confidence range surrounding the Viterbi estimate reported to the customer. These
confidence ranges are specific to the ethnicity region in question and differ from person to person
depending on their specific Viterbi estimates. Our objective when defining this approach was to maximize
the probability that the reported range contains the true ancestry proportion (recall), while also

maximizing precision by maintaining a fairly narrow range.

We can test our process for calculating the range using synthetic admixed individuals, like those used for
the cross-validation studies, to determine how often it correctly gets the known ethnicity percentage within
the range. In other words, how often does the range overlap the known ethnicity. We find that the
algorithm performs very well for some populations and less well for others. Since we know the true
ethnicity in the synthetic admixed individuals, we can incorporate correction factors specific for each

population to maximize the probability that the true ethnicity falls within the range.

A large range often reflects the challenges we face because geographically neighboring regions have
similar DNA. What this means is that if a customer’s ethnicity estimate includes many neighboring
regions, their ranges will most likely be larger than if it contained more distant regions. For example, while
we may be fairly certain that a customer has 50% Korea and 50% Portugal ancestry (and therefore small
ranges), we may be less sure about a customer who gets 50% Spain and 50% Portugal. It is easier to tell
Korea from Portugal, but harder to tell Portugal from Spain. This may be reflected in the larger ranges for
the second customer. But it is important to keep in mind that we are very confident of the European
heritage of customer two, we are just less certain about how much ancestry is derived from Portugal and
how much from Spain. It is worth noting that, in general, as we increase the precision of our regions (e.g.,
breaking Ireland & Scotland into two separate regions), the ranges may become larger, and that this is

because DNA from neighboring regions is still very similar.



5. Future Ethnicity Estimation Refinement

While AncestryDNA is extremely proud of the updates in this release of its genetic ethnicity estimation
process, we will continue to improve the product over time. The availability of new data, the development
of new methodologies, and the discovery of new information relating to patterns of human genetic

variation will all enable future improvements to the product.

Figure 5.1: Ethnicity Inprovement Cycle.

Each of the steps above represents a critical part of our ethnicity estimation procedure and development.
Currently, we are working to further expand our global reference panel for future ethnicity updates. We
have already begun genotyping and analyzing samples for a future update, which will provide
finer-grained estimates of ethnicity. We are also continuing our diversity initiative, which gathers DNA
samples from underrepresented populations around the world to expand the number of regions we can

report back to customers.

Simultaneously, we are also working to improve our algorithms for ethnicity estimation. Future ethnicity
updates will include an improvement to our statistical methodology that will more fully leverage

information in genetic data to reveal even more details about population history. Along the way, we always



perform thorough testing, involving analyses like those described above. These tests inform the focus of

our improvements and help refine our improvements as necessary.

Each new release of genetic ethnicity estimation will represent a step forward in our ability to give our
customers a complete description of their genetic ancestry and inform them about their genetic origins.
We hope that, like the entire team at AncestryDNA, our customers will look forward to these future

developments.
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