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Summary

The AncestryDNA® science team has developed a fast, sophisticated, and accurate method for

predicting customers’ physical and behavioral characteristics based on their DNA Data. The

AncestryDNA® Traits product (‘Traits’) includes prediction models that fall into two

categories—those based on DNA markers identified from reviews of existing scientific literature

(literature traits) and those based on genetic-trait association analyses performed by the

AncestryDNA science team (polygenic risk score, or PRS, traits).

We choose traits based on customer interest, the influence of genetics on the trait, existing

scientific research, and confidence in our predictions for a given trait. At the outset, we

prioritized traits that were well-defined, easily self-reported via surveys, and known to have a

strong genetic component.

The Traits product communicates how a person’s genetics makes them unique and provides

insights into how their genetics shapes their physical and behavioral characteristics. Traits also

enables customers to compare results with family members and view the variation in traits

across populations. Traits is an engaging way for customers to explore their families, histories,

and DNA.

Glossary

Allele— A variant in the DNA sequence. For example, a certain DNA nucleotide could be either A or C.
Chromosome— A large, inherited piece of DNA. Humans typically have 23 pairs of chromosomes with
one copy of each pair inherited from each parent.
Complex trait— Traits influenced by variation within multiple genes and interactions with behavioral and
environmental factors. They do not follow easily predictable patterns of inheritance.
Genome— All of someone’s genetic information; the DNA on all chromosomes.
Genotype— A general term for observed genetic variation either for a single site or the whole genome.
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Haplotype— A physical grouping of DNA markers along a single chromosome that are inherited
together.
Heritability—Within a population, how much the variation in a trait is explained by variation in peoples’
genes.
Imputation— An approach to predict missing genetic information for an individual based on patterns
found in existing genetic data.
Locus— A location in the genome. It could be a single site or a larger stretch of DNA.
Mendelian trait— Traits controlled mostly by a few genes that follow predictable patterns of inheritance
according to Mendel’s Laws.
Parental Haplotype— The half of an individual’s genome that is inherited from one parent. A person’s
genome is made of two parental haplotypes.
Phasing— An analytical step to determine the specific combination of alleles that an individual inherits
from each biological parent and read an individual’s genome as separate parental haplotypes.
Polygenic Risk Score (PRS)— A summary of the relative risk or probability for a trait based on the
collective influence of many DNA markers.
Single nucleotide polymorphism (SNP)— A single position (nucleotide) in the genome where different
variants (alleles) are seen in different people. SNPs are the main form of DNA marker used in
AncestryDNA analyses.

Introduction

The AncestryDNA Traits product (‘Traits’) uses customers’ genetic information to report

estimates and probabilities of their physical and behavioral characteristics. It also provides

insights into the genetic determinants of those characteristics. With Traits, customers can

compare results with friends and family and see how common certain traits are in different

places in the world. As an addition to information about their origins and genetic relatives, traits

are a way for customers to engage with their families, histories, and DNA.

Here we use the term ‘trait’ to mean a distinct and measurable physical or behavioral

characteristic shaped by combinations of genetic and environmental factors. Some traits are

driven primarily by environmental factors and have essentially no genetic determinants. For

example, the language a person speaks is transmitted from speakers to their offspring through

shared culture, not through DNA. In contrast, some traits are driven primarily by genetics. Ear

wax consistency, often categorized as wet vs. dry, is determined by a single variant in the DNA

sequence (also called a single nucleotide polymorphism, or SNP) in the gene ABCC11

(Yoshiura et al. 2006; Tomita et al. 2002). Parents pass this trait to their offspring through DNA.
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Traits like ear wax consistency can be accurately predicted by knowing someone’s genotype at

one or a few locations in their DNA. These traits (known as Mendelian traits) exhibit predictable

inheritance patterns based on the particular genotypes of each parent. Alternatively, complex

traits, which are more common, are determined both by environmental influences and by many

hundreds or thousands of DNA markers that interact with each other. Attained height is an

example of a complex trait. It is influenced by over 700 known DNA markers and is also

contingent on proper childhood nutrition, which can modulate the genetically determined

theoretical height maximum (Jelenkovic et al. 2020; Marouli et al. 2017).

For predicting traits, we have developed models that primarily use genetic information (DNA)

and demographic information (age, sex, and ethnicity). Our main goal is to estimate how

customers’ genetics contribute to their physical and behavioral traits. The surveys that provide

data for building traits prediction models collect customers’ self-assessments of relevant

traits—not all possible environmental factors.

In this white paper, we provide an overview of the approach used to develop the Traits product

and associated prediction models. We begin by discussing the process for selecting traits to

include in the product, which is informed by our reviews of scientific literature and by the surveys

of Ancestry customers. We then describe the two distinct categories of trait prediction algorithms

that we employ—those based on reviews of the scientific literature and those based on in-house

polygenic risk score (PRS) analyses. For each category, we detail the statistical methods used

to create the model and walk through an example of predicting a relevant trait. Lastly, we detail

how we use a combination of our trait prediction models and DNA phasing technology to identify

which parent had a greater genetic influence on any a person’s traits.

Methods

Trait selection and surveys

We prioritized developing models to predict traits that were well-defined and easily self-reported

via surveys and known to have a strong genetic component. The strength of a trait’s genetic

component can be summarized as the traits’ heritability—the proportion of a trait’s total

3

https://paperpile.com/c/C9pHyh/ONZF+tThA
https://www.ancestry.com/c/dna-learning-hub/heritability


variability in a particular population that is due to genetic variation (Visscher, Hill, and Wray

2008; Tenesa and Haley 2013). A trait’s heritability estimate can inform the upper limits of

performance for a corresponding genetic prediction model. While some traits have high

heritability and would be well-predicted, they might be difficult to measure reliably or would

require specialized tools (e.g., A/B/O blood type). We performed comprehensive reviews of

scientific literature to evaluate the estimated heritability for candidate traits and inform survey

content creation. Candidate traits also underwent a review process where they were vetted

against matters of privacy, cultural sensitivity, and other concerns.

Surveys of participating AncestryDNA customers are the primary method by which we now

collect information to design the Traits product and develop DNA-based prediction models.

Surveys are one of the first engagement points for new AncestryDNA customers while they

await their results, as they’re available immediately upon activation of a DNA kit. In order to

collect accurate self-assessments of a person’s traits, questions are written simply, and wording

is modeled after validated questionnaires from scientific literature (when available).

Questionnaire items cover categories including life stories (family history, language, country of

origin), physical traits, behavioral traits, diet/fitness, and wellness. New questions are

continuously being developed and released. When applicable, survey questions contain a

combination of text and illustrations (e.g., eye color chart) to help improve the accuracy of

responses. Some survey questions are binary (yes/no), with an option to report uncertainty

(e.g., “not sure”). Others are written with a 5-point Likert scale (e.g., rating drawing ability on a

scale of “far above average” to “far below average”). And still other traits are categorical (such

as eye color) or continuous (height). New questions are increasingly incorporating Likert scale

responses to capture a broader range of preferences.

Note - the AncestryDNA Traits product does not report health-related traits, such as DNA

markers associated with cancer susceptibility markers or chronic diseases.

Trait prediction

The current iteration of Traits includes two categories of prediction approaches. One category of

prediction approaches relies on DNA markers identified from extensive reviews of the existing
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scientific literature. Trait prediction algorithms in this category—referred to as literature

traits—rely on fewer than 10 DNA markers to predict a given trait. For example, the

AncestryDNA algorithm we use to predict whether a person has freckles relies on the genotypes

of four DNA markers. The algorithm to predict ear-wax consistency relies on a single DNA

marker.

The other category of trait prediction algorithms relies on polygenic risk score (PRS) analyses

performed in-house by AncestryDNA scientists. These trait prediction algorithms—referred to as

PRS traits—consider hundreds or thousands of DNA markers, each of which makes a small

contribution to the final trait. To predict the trait, we summarize the information from all DNA

markers into a single score.

In subsequent sections, we describe in detail how these different categories of traits are

predicted in the AncestryDNA Traits product.

Literature traits

Literature review identifies trait-associated SNPs

Ancestry scientists conducted a systematic literature review of SNP-trait associations to identify

traits associated with 10 or fewer DNA markers. As part of the review process, we considered

the quality of publication reporting the association, the study sample size, the strength of the

association, the replication of results in independent populations, and the generalizability of

findings (i.e., are the study’s findings consistent across different study populations and in

follow-up studies of multi-ethnic populations). We classified results into categories based on the

quality of evidence:

● No evidence: no SNP-trait association was reported, so not useful for prediction.

● Limited evidence: conflicting evidence of a SNP or SNPs associated with the trait; only

one paper that is underpowered; only one paper and strength of association is weak but

OK; underpowered / not well-controlled / conflicting experiments, etc.
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● Moderate evidence: only one paper documenting a SNP or SNPs associated with the

trait, but the paper is well-powered; only one paper, but the association is

strong/compelling.

● Good evidence: more than one paper supports a SNP or SNPs associated with the trait.

Where possible, we listed the references used to select variants in the Traits reports that users

see.

LD-based pruning of SNPs

When DNA markers are in close physical proximity to each other on a chromosome, certain

patterns of DNA letters can occur together more often than expected by chance. This is

because DNA is inherited in blocks called haplotypes. Over generations, sets of SNPs that are

close to each other in the same haplotype become physically linked and their sequences

correlated with each other. This pattern is known as linkage disequilibrium (LD).

A consequence of this pattern is that in studies of SNP-trait associations, multiple SNPs may

appear associated with a trait because they are in LD, even though only one SNP presumably

has a biological effect on the trait. As a result, when studies list several dozen to hundreds of

SNPs associated with a trait, it is possible this list can be narrowed to a relatively few

independent regions of the genome. This process is known as LD-based pruning, and it

effectively reduces the multiple SNP-trait association signals to a single SNP that represents a

set of linked SNPs.

During our literature review, when we found studies reported many SNPs associated with a

single trait, we performed LD-based pruning of the SNPs to determine if we could reduce the

total number of SNPs to a set of independent loci that met our 10-marker limit. If we could, we

proceeded to use the LD-pruned SNPs for our trait prediction. If those SNPs were genotyped on

our array we used those data directly, if not we used a proxy SNP strongly correlated with the

LD-pruned SNPs.

Patterns of linkage disequilibrium across the genome vary between populations of people. As a

result, LD-based pruning approaches also will vary for different populations. We determined LD

patterns for pruning by using genotypes of 2,504 people from Phase 3 of the 1,000 Genomes
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Project. They were grouped into five super populations: African (AFR), Admixed American

(AMR), East Asian (EAS), European (EUR), and South Asian (SAS). In order to be used as a

trait predictor, proxy SNPs need to exhibit high LD in all these populations, meet genotyping

thresholds on our microarray, and show comparable allele frequencies in our customer data to

the allele frequencies reported in the 1,000 Genomes Project data

(https://www.internationalgenome.org/data). We imputed missing genotypes using a proprietary

algorithm.

Prediction algorithm performance

To assess prediction performance, we created confusion matrices and calculated relevant

metrics such as sensitivity and specificity (Figure 1). We also compared the allele frequencies

for trait-associated SNPs in the AncestryDNA user cohort to the frequencies reported for other

populations in publicly available resources. When we assessed performance, we stratified the

data by broadly defined global populations (e.g., African, European, Asian, American,

Oceanian) to check calibration and portability of predictions to different populations (Figure 2).

Figure 1. Confusion matrix and performance metrics for earwax trait prediction based on
genotype calls. 0 = ‘dry’, 1 = ‘wet’ consistency.
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Figure 2. VO2 max response category breakdown by global population. The proportion of individuals
in our test population who would receive a result of average or above average increases in VO2 max in
response to regular exercise. People are stratified by broadly defined global populations. The “no call”
group represents a small number of people missing one or more genotype calls for the SNPs in the
predictor.

Advantages and limitations

This literature-based approach for trait predictions has several advantages. We leverage results

from high-quality, peer-reviewed scientific studies that often involve populations specifically

enriched for the trait. These studies usually capture trait information in clinical detail and are

able to include a wider range of confounding factors when testing for SNP-trait associations.

Our literature traits predictions use a small enough number of SNPs for each trait that we can

make decisive calls about the person’s trait, rather than reporting a likelihood of a certain trait..

These are more straightforward to report and easier for customers to understand.
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The major limitation to our literature-based approach is that the trait-associated SNPs reported

in the literature may not be genotyped in an AncestryDNA test. Additionally, associations

reported in the literature are population-specific and might not be generalizable to the

AncestryDNA customer base. This is especially true if association analyses were conducted in

under-studied or under-represented populations. Another important consideration is genetic

interactions with environmental factors. We collect limited information about non-genetic factors

that could impact the presentation of traits. Using SNP-only prediction algorithms cannot

account for interactions between genetic and non-genetic factors.

Prediction example - earwax consistency

Earwax consistency is often categorized as two types— “wet and sticky” or “dry and flaky.”

Among people of primarily European or African descent, the “wet” phenotype is more common.

The “dry” phenotype is most common among people of Asian and Native American descent.

This trait is known to be influenced by a single variant, rs17822931 (C/T), located within the

ABCC11 genetic region on chromosome 16. People who carry at least one copy of the C allele

tend to exhibit the “wet” trait. Therefore, to predict earwax consistency, we note the presence or

absence of the C allele. Interestingly, population allele frequencies correspond to the ethnic

differences in phenotypes. The C allele has a frequency of 0.88 among Europeans, while the T

allele has a frequency of 0.83 among Asians. The prediction algorithms increase in complexity

when accounting for multiple SNPs, but employ similar algorithms of tabulating the presence or

absence of effect alleles to predict phenotypes.

PRS traits

Developing trait predictions from customer DNA data

Complex traits are potentially influenced by hundreds of independent genetic markers. It would

not be feasible to rely on SNPs identified in reviews of scientific literature to develop prediction

algorithms for complex traits. Instead, we leverage consenting AncestryDNA customers’ genetic

and survey-response data to conduct genome-wide association testing, identify trait-associated

SNPs, and calculate a polygenic risk score (PRS) to predict traits. This process is summarized

below (Figure 3).
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Figure 3. Flow chart of how we develop PRS traits using customer genetic and survey-response
data.

Collected data sets

To develop our PRS traits, we have combined the genetic data and survey responses of over 3

million customers who consented to participate. Exact survey response counts vary by trait. The

availability of AncestryDNA genetic and survey data is subject to acquisition of new customers

and deletion requests from customers who no longer wish to participate in research.

We partition the collected data set into independent training, validation, and test sets. The

phenotype distributions in each set are equivalent. We use the training dataset to identify SNPs

associated with traits of interest, the validation dataset to develop PRS-based prediction

algorithms of traits, and the test dataset to measure the performance of the prediction

algorithms across different segments of the AncestryDNA customer base.
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Genome-wide association tests identify trait-associated SNPs

We begin identifying SNP-trait associations by using the training data partition of our trait

dataset. We run genome-wide association tests to identify SNPs that have a statistically

significant association with a trait of interest. For traits measured as a continuous variable (e.g.,

height), we use linear regression. For traits recorded as a binary variable (e.g., risk-taking), we

use logistic regression. Genotypes are coded additively based on the number of effect alleles

(0/1/2). Genotypes are filtered by genotyping rate and minor allele frequency. All models are

adjusted for age, sex, genotyping platform, and 10 principal components. We estimate principal

components using an LD pruned dataset of all survey respondents, filtering by genotyping rate

and minor allele frequency and excluding extended LD regions

(https://genome.sph.umich.edu/wiki/Regions_of_high_linkage_disequilibrium_(LD)). We assess

the presence of genomic inflation visually using QQ plots and by estimating the genomic

inflation factor lambda—the ratio of the observed vs. expected median values of the chi-square

test statistic (de Bakker et al. 2008). Genome-wide association test results are summarized

using Manhattan plots.

Additionally, we use summary statistics from our genome-wide association tests for a specific

trait to estimate that trait’s heritability. We use the estimated heritability to inform a model’s

maximum attained predictive performance.

Polygenic Risk Scores

Polygenic risk scores are calculated as the sum of a person’s effect allele counts weighted by

the effect estimates from genome-wide association tests (Dudbridge 2013). The equation for

calculating the PRS for a specific trait for individual j based on the effect size β of alleles i

through N is summarized below:

𝑃𝑅𝑆
𝑗

=  
𝑖

𝑁

∑  β
𝑖

*  𝑐𝑜𝑢𝑛𝑡
𝑖𝑗

(https://www.frontiersin.org/articles/10.3389/fgene.2022.818574/full#:~:text=A%20polygenic%20

risk%20score%20(PRS,genome%2C%20each%20of%20which%20can)
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We implement a ‘clumping + thresholding’ approach to calculate PRS using GWAS summary

statistics (Chang et al. 2015; Dudbridge 2013; Wray et al. 2014; Euesden, Lewis, and O’Reilly

2015; Chatterjee, Shi, and García-Closas 2016). As mentioned previously, DNA markers in

close proximity are inherited in LD blocks. In association studies, multiple markers within the

same LD block can be associated with a trait by virtue of their correlated nature. When

calculating PRS, it is important to use only independent SNPs—ideally, a single representative

marker from each LD block. We can achieve this using LD clumping. LD clumping is

conceptually similar to LD pruning in that it reduces the number of trait-associated SNPs to a

smaller set of independent SNPs. However, LD clumping does this while retaining the SNPs

most strongly associated with the trait in each LD block.

When we conduct LD clumping of GWAS SNPs, we ensure that the chosen representative SNP

in each LD block is associated with the trait at a minimum significance level of p < 0.5. We

remove any SNPs in an LD block that are correlated with the representative SNPs at a r2 cutoff

of >0.1. Lastly, we assess correlations between SNPs within a rolling window of 250 kilobases,

meaning the maximum LD block length considered was 250,000 base pairs in length

(https://www.cog-genomics.org/plink/1.9/postproc#clump).

After obtaining a list of independent SNPs associated with a trait, we use the validation data set

(see ‘Collected datasets’) to identify the set of SNPs that will maximize our ability to predict the

trait when included in the PRS. We do this by further filtering the trait-associated SNPs based

on their genome-wide association test p-values and measuring the PRS’s prediction accuracy.

Specifically, we evaluate the SNPs over nine different p-value thresholds (0.0001, 0.001, 0.01,

0.05, 0.1, 0.2, 0.3, 0.4, 0.5) and identify the best-performing p-value threshold.

Performance measures depend on the type of trait. For continuous traits, we choose the p-value

threshold that optimizes the Root Mean Square Error (RMSE) rate, a measure that captures

variability around the predicted values. When optimizing based on RMSE, a lower value is

better, as it means the predicted values more closely mirror the actual values. For binary traits,

we maximize the Area Under the Curve (AUC), which is a measure of the model’s ability to

distinguish between the different classes (higher is better) (Choi, Mak, and O’Reilly 2020).
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When we have determined the final set of SNPs to use in the PRS for a specific trait, we assess

that prediction model’s performance metrics using the test data set (see ‘Collected datasets’).

For binary traits, we use AUC to assess model performance. We also create calibration plots for

each trait, which compare the expected probabilities to the observed probabilities across 20

PRS score bins.

Reporting Traits Results

For most PRS traits, customers are assigned to one of 4 bins that describe their likelihood of

exhibiting a particular trait, ranging from “least likely” to “most likely”. To do this, we first partition

PRS scores into likely/unlikely groups, centered around a classification threshold that maximizes

the geometric mean of sensitivity/specificity (or F1, in the case of highly imbalanced traits). We

then further divide each of these groups into thirds to generate the ‘least likely’/‘most likely’

groups based on the lowest and highest portions of the PRS distributions. These uppermost and

lowermost groups express a higher degree of certainty to customers with relatively more

extreme PRS values.

For non-binary traits such as ‘birthweight’ or ‘hair curl’, the PRS bin labels describe the trait

predictions themselves (e.g., ‘straight’ vs ‘wavy/curly’). The cutoff values for these bins were

selected by optimizing the separation of PRS distributions within each survey response group

among respondents in the training data.

Advantages and limitations

Our PRS-based approach for traits prediction has several advantages over the literature-based

approach. First, a PRS-based approach allows prediction models to leverage all the genetic

information available from our genotyping array instead of relying on a few SNPs shared

between our array and published results. This feature becomes more important as we continue

to develop prediction models for complex traits, where the genetic influence comes from

hundreds or thousands of DNA variants. Second, our PRS-based approach enables us to

develop models tailored to our diverse customer base, as opposed to using models from

previous studies of populations that might not be transferable to AncestryDNA customers.
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There are some limitations to our PRS-based traits predictions that we hope to address in future

updates. First, as the AncestryDNA customer base continues to become more diverse, our

method for conducting scans and calculating PRS scores will need to be adapted to make them

more portable to populations with ethnically diverse and admixed backgrounds. Second, while

the current genotype arrays are more than adequate for ethnicity estimation, they rely on tag

SNPs. Tag SNPs are strongly correlated with neighboring SNPs in a region of the genome and

can be used to represent that region. A more complete set of DNA markers would potentially

allow for identifying more trait-associated SNPs and improve the PRS prediction accuracies.

And lastly, while our models are adjusted for baseline demographic factors and population

stratification, we lack information about confounding factors or important environmental

exposures relevant to the traits models under development. It is important to properly

communicate these limitations to customers.

Prediction example - nap taking

Collected Data

In this example, we describe our approach to developing a PRS model to predict whether

customers take naps. To assess this trait, we surveyed participants to answer the question “Do

you take naps?” Participants were presented with response choices of “yes,” “no,” and “not

sure.” In total, about 650,000 people responded either “yes” or “no.” This data set of people was

divided into independent training (N=390,000), validation (N=130,000), and test (N=130,000)

groups. The distributions of responses by sex, continental ethnicity estimates (based on

customers’ genetic data), and age group are summarized below (Figure 4).
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Figure 4. Responses to survey questions ‘Do you take naps?’ stratified by sex, broad continental
group, and age group. EUR = Europe, ASIA = Asia, AFR = Africa.

There was no appreciable difference in nap-taking behavior by sex. When stratifying by broad

global populations, we noticed nominally higher reports of nap taking among people of Asian

and African descent, compared to Latinos and people of European descent. Lastly, nap taking

was more common among younger (18–30) and older (75+) customers.

Genome-wide association testing

We conducted genome-wide scans for association between additively coded DNA markers and

nap taking (yes/no) using the training data set of 390,000 people. Logistic regression models

were adjusted for age, sex, genetic principal components, and genotyping array. After we

filtered DNA markers based on genotyping rate and minor allele frequency, we retained a total

of 468,710 DNA markers.

QQ plots and inflation factors do not indicate significant inflation of test statistics (Figure 5). We

found several statistically significant genome-wide associations with nap taking; the strongest
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association was with chromosome 12 (Figure 6). Our findings replicated those from previous

studies, which identified DNA markers linked to daytime napping in the KRS2 gene (Dashti et al.

2021).

Figure 5. Quantile-Quantile plot for genome-wide association scan for the question “Do you take
naps?”
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Figure 6. Manhattan Plot of GWAS for the question “Do you take naps?”

PRS calculation

We began by performing LD clumping to remove markers correlated with the most significant

findings in each linkage disequilibrium window, reducing the number to 82,319 independent

markers (see ‘Polygenic Risk Scores’ for specific parameters). We then used the validation data

set of 130,000 people to find the best performing p-value threshold at which to filter SNPs for

PRS calculation. To do this, we calculated PRS scores at each of nine p-value thresholds, then

compared validation set AUC measures for each score version, ultimately selecting the

threshold that maximizes the AUC. We also considered computational costs for Parental Traits

estimation (see below) when selecting this threshold. Ultimately, in the case of the ‘taking naps’

trait, we selected 0.01 as the optimal p-value threshold, which resulted in a PRS model using

6,104 SNPs.
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After selecting the final set of SNPs to include in our PRS model, we calculated scores for the

test data set of 130,000 people and obtained performance metrics for the model. We also

reviewed the distribution of PRS scores in the combined training, validation, and test sets

(Figure 7). The model’s performance metrics were further stratified by broad continental

categories to assess performance in diverse populations (Figure 8).

Figure 7. PRS distribution by trait category (non-nap takers v. nap takers) in the combined
training, validation, and test sets.
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Figure 8. PRS model precision, recall, and F1 metrics stratified by broad continental category.

We also evaluated the PRS model’s prediction performance when relying on genetic information

alone (PRS-only), and when including demographic factors such as age, sex, and ethnicity

(PRS+age+sex+ethnicity). Using PRS-only models, we obtained an AUC of 0.565 (Figure 9).

We expected this value, given the estimated trait heritability H2 = 0.0471 (0.0022) (Wray et al.

2010). Our model’s prediction performance improves somewhat when including age, sex, and

ethnicity components (AUC = 0.571) (Figure 10).
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Figure 9. Area Under the Curve (AUC) plot for PRS-only model using p-value threshold p < 0.01
(AUC = 0.546).

21



Figure 10. Area Under the Curve (AUC) plot for PRS+age+sex+ethnicity model using p-value
threshold p < 0.01 (AUC = 0.56).

In addition to measuring the AUC to evaluate the PRS model’s performance, we also looked at

calibration plots that compare predicted class probabilities against observed class proportions

(Figures 11 and 12). Overall, we see that the model’s performance (red line) matches

reasonably well to the expectation (dashed black line).
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Figure 11. Calibration plot for PRS-only prediction model. Samples in the test data set were binned
based on their PRS predicted probabilities to take naps, and compared to the proportion of individuals in
that bin who identified as nap-takers (red line). Overall, the PRS model performs well, and individuals with
a high predicted nap-taking probability are more likely to have reported taking naps.
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Figure 12. Calibration plot for PRS+age+sex+ethnicity prediction model.

To report results to customers, we calculate PRS score quantiles based on the distributions

among all “naps” survey respondents. Customers are assigned bins based on cutoff levels,

which serve as a proxy for their propensity for taking naps relative to the rest of the population

(Figure 13).
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Figure 13. Example customer trait report for the trait “Taking naps.”

Determining parental genetic influence on trait outcome

In the preceding sections, we show that we can predict physical and behavior traits for

customers based on their genetic data. By leveraging the DNA markers with large effect sizes

and polygenic score indices, we can predict the likelihood a customer falls into a certain trait

category. Providing customers with these trait predictions provides a fun and engaging way for

customers to explore their families, histories, and DNA.

However, in addition to their own traits, customers are especially interested in who in their family

they inherited these traits from. Did they, for example, get their green eyes from mom and their

dislike for cilantro from dad? For those who are disconnected from one or both of their biological

parents, this can be an especially impactful experience.

Therefore, we designed a novel approach that makes use of our proprietary DNA phasing

technology, literature traits, and PRS models to separate the genetic effects of the DNA markers

inherited from each parent on the individual’s trait outcome. We use this information in
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conjunction with the individual’s own trait prediction to indicate which parent had a proportionally

greater impact on the individual’s final trait. In the example illustrated in Figure 13, a customer

can see they are predicted “less likely” to take naps, and that DNA from their “parent 2” had a

larger contribution to their trait score.

In the following sections, we provide greater detail about the technical steps involved in

determining the parental genetic influence on a person’s trait prediction. We also highlight

several caveats and limitations of this analysis.

Phasing Customer DNA Data
A crucial step in determining the parental genetic influence on a trait outcome is to separate an

individual’s DNA into the haves inherited from each parent—a process called phasing.

Specifically, at every site in a person’s DNA, they inherit two versions of the DNA marker, one

from each parent.

In order to separate the DNA inherited from each parent for all of an individual’s DNA, we utilize

our proprietary technology called SideView™. In brief, SideView™ works by comparing the DNA

a person shares with their matches and the DNA those matches share with each other. This is

based on the premise that all of a person’s matches share one or more segments of identical

DNA with them and at least one of their parents. As well, a match is usually related to an

individual through only one parent.

When segments of identical DNA from different matches overlap but don’t match each other,

they indicate there is only one way to reasonably phase the person’s DNA in that region. By

leveraging our DNA database, it is possible to find enough of these overlapping identical DNA

segments across a person’s whole genome to phase all of their DNA.

SideView™ uses DNA shared with distant relatives to power the phasing. The correctness of

the DNA phasing for a person therefore relies, in part, on that person sharing enough DNA with

other people in our database. For certain groups of people, there are fewer matches in our

database and so there is a lower level of completeness to their phasing. As well, certain

populations have historically high rates of endogamy, which violates our method’s assumption
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that a match is related to a person through only one parent. In this case, any match may be

related to both parental lineages, limiting our ability to accurately phase the customer’s DNA.

Calculating trait scores for separate parental haplotypes

In addition to predictions of their own traits, customers are especially interested in who in their

family they inherited these traits from. Our approach to satisfy this interest is straightforward, we

use our SideView technology to phase a customer’s DNA into separate parental haplotypes. We

then calculate trait scores for each parental haplotype and use these to infer the parent with

greater genetic influence on the customer’s traits (Figure 14). However, this approach is

complicated by technical realities of our SideView phasing and by our desire to provide a

consistent and understandable user experience. Therefore, we have adopted additional

strategies to supplement our pipeline and improve the user experience.

Figure 14. We calculate separate trait scores for each parental haplotype to determine the parent
who had more genetic influence on the customer’s trait. At top, a customer phased DNA, with one
parental haplotype colored green and the other parental haplotype colored blue. DNA markers associated
with the trait “likely to take naps” are indicated in yellow, and their effect size and direction on the trait are
indicated with arrows. At bottom, the contributions to the trait from each parental haplotype are weighed
separately based on the number, direction, and effect size of the DNA markers.

PRS traits

The primary constraint we face in developing a process to infer polygenic scores for separate
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parental haplotypes is the overlap of the set of SNPs used for phasing and the set of SNPs

used for PRS trait prediction. Specifically, the set of SNPs that could be used to build a PRS

model number close to 1 million, some of which are directly genotyped by our array and others

of which are imputed from those genotyped SNPs. At the same time, the SNPs used for phasing

a customer’s genome consist exclusively of those that are directly genotyped by our array, and

number approximately 400,000 SNPs. Some, but not necessarily all, of the SNPs used to

predict a trai overlap with the SNPs used for phasing. For example, if a PRS model uses 15,000

SNPs to predict a trait, some percentage of those may not be included in the set of SNPs used

for phasing. We therefore developed a secondary set of PRS models for each trait that are

limited to just the SNPs used in phasing. These secondary models are only used to calculate

the parental haplotypes’ PRS scores. This approach is sufficient because we are only interested

in the parental haplotypes’ relative PRS scores, i.e., which parental haplotype’s score is higher

and which is lower, and not the exact PRS score. For calculating the customer’s own PRS

score, we use the full PRS model and all available SNPs.

Additionally, for a small minority of customers, there are fewer matches in our database and so

there is a lower level of completeness to their phasing. This means that for some sections of

their genome we will not know which parent contributed which allele. If these unphased sections

of the genome include SNPs that are used for our PRS model, this hinders our ability to

calculate a polygenic score for the separate parental haplotypes. Essentially, if we don’t know

which allele came from which parent, we can’t use the information from that SNP in our PRS

model for the parental haplotype. In order to address this and to ensure the quality of our

predictions regarding parental influence, we require that more than 75% of the SNPs used for

an individual’s PRS score have to be phased (Figure 15). If the number of phased SNPs fall

below this threshold, we can still report the customer’s individual trait prediction, but do not

report which parental haplotype has a greater genetic influence.
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Figure 15. PRS scores for parental haplotypes only use SNPs that are completely phased. At top is
a customer’s unphased genome, represented by gray bars, with SNPs used for the trait prediction
represented by yellow vertical marks. At bottom is the customer’s phased genome, with one parental
haplotype colored green and the other colored blue. A section of the customer’s genome remains
unphased, colored gray. The SNPs that fall in unphased sections of the genome cannot be used for
predicting parental genetic influence on a trait.

The secondary constraint we face is ensuring that the directionality of a customer’s trait aligns

with the parental haplotype we report has a greater genetic influence. For example, we want to

ensure that if a customer’s trait is predicted in the highest and “most likely” bin of PRS scores,

that we identify the parental haplotype that had the highest PRS score (Figure 16). Alternatively,

if a customer’s trait is predicted in the lowest and “least likely” bin, we need to identify the

parental haplotype with the lowest PRS score. Given that different alleles can affect a trait to

differing degrees, and the possibility for an individual to carry at any given SNP both an allele

that increases their chance of a trait and an allele that decreases their chance of a trait, it may

be the case that the PRS scores for either parental haplotype separately contradicts the overall

PRS score for an individual.
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Figure 16. Identifying the parent with greater genetic influence on a trait depends on the
customer’s own trait prediction.We want to ensure that the determined parent of influence aligns with
a customer’s own trait prediction. Consider the trait “likely to take naps,” where a higher PRS score
indicates you are more likely to take naps. In the cases of customers A and B, both have identical
parental PRS scores. However, the customers have opposite trait predictions based on their own
individual PRS scores. Therefore, for customer A we want to indicate that parent 2 (P2) had the greater
genetic influence, while for customer B we want to indicate that parent 1 (P1) had the greater genetic
influence.

Our approach makes it easy to calculate separate PRS scores for each parental haplotype and

compare them to the customer’s overall trait assignment. Additionally, we can indicate when

both parents contributed equally to the individual’s genetic trait if the PRS scores for each

parental haplotype are identical. In some cases, however, the difference between the parental

haplotypes PRS scores is minimal. From a customer perspective and a biological standpoint, we

question whether it is accurate or informative in these cases to identify only one haplotype as

more genetically influential. Rather than identifying an arbitrary cut-off value for determining if

the parental haplotype PRS scores are sufficiently different, we adopted an empirical approach

and looked at the PRS scores of parents and offspring for 300,000 trios. We identified a subset

of parent-pairs that showed exceptionally similar trait scores, and derived a cut-off value for

distinguishing these from parent-pairs with more divergent scores. This ultimately provided

greater flexibility to identify when both parents contributed equally to a customer’s genetic trait

score.

Literature Traits

The procedure for calculating parental influence for literature traits is analogous to the

procedure for PRS traits, with some modifications to accommodate the smaller number of

markers and underlying assumptions about allele effect sizes. Specifically, we only use the

subset of trait markers that overlap with the set of phased SNPs, and calculate the weighted
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sum of the effect alleles per parent. There are two important modifications to the procedure for

literature traits. First, effect weights are assigned to alleles based on heritability and dominance

patterns reported in literature. With a few exceptions, effect alleles are assumed to contribute

equally to a trait and are assigned equal weights. Second, parental trait results reporting “equal

influence” will be more common for these traits. Because literature-trait scores are based on

fewer markers it is more likely that both parents contributed identical allelic scores to their

offspring.

Limitations

By leveraging SideView and our traits prediction models we can indicate which parent had more

genetic influence in determining a customer’s various trait predictions. It is important to note that

this is not the same as predicting the parents’ own traits. That is, a parent’s influence on an

offspring’s trait is not indicative of whether that parent displayed that particular trait, as we only

have information from half of each parent’s DNA. As well, parental influence does not mean that

a trait was inherited solely from a single parent, nor does it describe concrete modes of

inheritance. As discussed, complex traits are the result of a combination of genetic and

environmental factors, and the parental influence on a person’s traits is ultimately the result of

both.

Summary and future work

AncestryDNA is proud of the methods we developed for our traits prediction process, and we

will continue to improve the product over time. The availability of new data, the development of

new methodologies, and the discovery of new information relating to patterns of human genetic

and phenotypic variation will all enable future improvements.

Each of the steps above represents a critical part of our traits prediction procedure and

development. Currently, we are working to further expand our survey to collect more responses

and explore new trait-genotype relationships.
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Simultaneously, we are also working to improve our algorithms for trait prediction. Future Traits

updates will include an improvement to our statistical methodology that will more fully leverage

information in genetic data to reveal even more details about the role of genetics on predicted

traits. Along the way, we always perform thorough testing, which involves analyses like those

described above. These tests inform the focus of our improvements and help us refine our

methods as necessary.

Each new Traits release will represent a step forward in our ability to give our customers a more

complete and engaging insight into their genetic makeup. We hope that, like the team at

AncestryDNA, our customers will look forward to these future developments.
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