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Summary:

The AncestryDNA® science team has developed a fast, sophisticated, and accurate method for
estimating the historical origins of customers’ DNA going back several hundred to over 1,000
years. Our newest approach improves upon our previous version in the number of possible
regions that a customer might be assigned (from 84 to 88) as well as an increase in accuracy to
both regions assigned and the percentages assigned for each region. We have added four new
regions as well as made improvements to the composition of our reference panel, resulting in
more accurate estimates overall. Given the cutting-edge nature of this type of science, we will

continue to refine our approach and improve estimates.

The basic idea behind ancestral region inference involves comparing a customer’s DNA to the
DNA of people with long family histories in a particular region or group, what we call a reference
panel, and looking for segments of DNA that are most similar. If, for example, a section of a
customer’s DNA looks most similar to DNA in the reference panel from people from Norway, that
section of the customer’s DNA is said to be from Norway, and so on. The end result is a portrait
of a customer’s DNA made up of percentages of the 88 regions contained in the reference

panel.

That is a short version of how AncestryDNA determines a customer’s ancestral regions. The

rest of the white paper will delve more deeply into:

1. How the reference panel samples are chosen, their makeup, and how the panel is validated
2. How the algorithm that determines a customer’s ancestral regions from DNA works and how

it is validated



1. Introduction

Genetic tools that determine which populations in a reference panel are most similar to
someone’s DNA are a major component of the Origins product provided by AncestryDNA. As its

name suggests, Origins provides customers with insights into their past by analyzing their DNA.

AncestryDNA has employed a team of highly trained scientists with backgrounds in population
genetics, statistics, machine learning, and computational biology to develop a fast,
sophisticated, and accurate method for inferring ancestral regions for our customers. In this
document, we describe the approach we use to make those estimates. We will discuss the
development of the reference panel we compare each customer sample against, the inference
method we apply to determine regions, and finally the extensive testing regimen we employ to

assess the quality of our results.

Glossary

Admixed — Having ancestry from multiple populations.

Allele — A variant in the DNA sequence. For example, a SNP (defined below) could have two alleles: A
or C.

Centimorgan (cM) — A unit of genetic length in the genome. Two genomic positions that are a
centimorgan apart have a 1% chance during each meiosis (the cell division that creates egg cells or
sperm) of experiencing a recombination event between them.

Chromosome — A large, inherited piece of DNA. Humans typically have 23 pairs of chromosomes with
one copy of each pair inherited from each parent.

Genome — All of someone’s genetic information; the DNA on all chromosomes.

Genotype — A general term for observed genetic variation either for a single site or the whole genome.
Haplotype — A stretch of DNA along a chromosome.

Hidden Markov model (HMM) — A statistical model for determining a series of hidden states based on a
set of observations.

Locus — A location in the genome. It could be a single site or a larger stretch of DNA.

Microarray — a DNA microarray is a way to analyze hundreds of thousands of DNA markers all at once.
Nucleotide — DNA is composed of strings of molecules called nucleotides (also called bases). There are
four different types, and they are usually represented by their initials: A, C, G, T.

Population — A group of people.



Phasing — The assignment of DNA to contiguous segments corresponding to the DNA inherited from
Mom or Dad. This is done with an algorithm.

Recombination — Before chromosomes are passed down from parent to child, each pair of
chromosomes usually exchange long segments between one another and then are reattached in a
process called recombination.

Single nucleotide polymorphism (SNP) — A single position (nucleotide) in the genome where different
variants (alleles) are seen in different people.

2. Reference Panel

2.1 Calculating Ancestral Regions

Two chromosomes from the same geographic region or the same population will share more DNA with
one another than will two chromosomes from different regions or groups. So two pieces of DNA with a
historical connection to Portugal will have more DNA in common than will a piece of DNA from Korea and
a piece of DNA from Portugal. This is the basic premise behind the ancestral region results AncestryDNA

provides to its members.

To create the region results, we compare a customer’s DNA to a panel of DNA from people with known
origins (referred to as the reference panel) and look to see which parts of the customer’s DNA are similar
to those from people represented in groups in the reference panel. If, for example, a section of a
customer’s DNA is most similar to the reference panel samples from Senegal, then we identify that

section of the customer’s DNA as coming from Senegal.

The accuracy of our results depends on the quality of our reference panel. Because of this, AncestryDNA

has invested a significant amount of effort in developing the best possible set of reference samples.
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Figure 2.1: Reference Panel Refinement Cycle. Schematic of the reference panel refinement cycle. In step 1 we select candidate
reference samples from published data, the AncestryDNA customer list, and the AncestryDNA proprietary reference collection. For
AncestryDNA samples we rely on pedigree data to select those with deep ancestry from a single population. In step 2 we filter out
pieces of DNA between closely related samples from the candidate list. In step 3 we use principal component analysis (PCA) to
remove samples that show a disagreement in pedigree and genetic origin. We also use PCA to guide the identification of population
groups. In step 4 the panel is performance tested using numerous metrics and compared to the previous release. The final result is
a high-quality, well-tested reference panel. The entire procedure is cyclic, and AncestryDNA will continue to make improvements to

the panel with the goal of providing the most accurate results possible with the data available.

The rest of Section 2 describes the steps taken to develop our current reference panel, including sample
selection, quality control, and testing. The update that we describe here is not only an update of the

reference panel from our 2022 version but also increases the number of global regions from 84 to 88.

2.2 Who should be included in the reference panel?

Identifying the best candidates for the reference panel is key to providing the most accurate results
possible from a customer’s DNA sample. Under perfect circumstances, we would construct our reference
panel using DNA samples from people who lived hundreds of years ago. Unfortunately, it is not yet
possible to reliably sample historical populations in this way. Instead, we must rely on DNA samples
collected from people alive today and focus on those who can trace their ancestry to a single geographic

location or population group.



When asked to trace familial origins, most people can only reliably go back one to five generations,
making it difficult to find individuals with knowledge about more distant ancestry. This is because as we go
back in time, historical records become sparse, and the number of ancestors we have to follow doubles

with each generation.

Fortunately, knowing where someone’s recent ancestors were born is often a sufficient proxy for much
deeper ancestry. In the recent past, it was much more difficult and thus less common for people to
migrate long distances. Because of this, the birthplace of a person’s recent ancestors often represents the

location of that person’s deeper ancestral DNA.

AncestryDNA Reference Panel Candidates

In developing the most recent AncestryDNA regions reference panel, we began with a candidate set of
close to 180,000 samples. First, we examined over 1,000 samples from 49 worldwide populations from a
public project called the Human Genome Diversity Project (HGDP) (Cann et al. 2002; Cavalli-Sforza
2005), over 2,500 samples from 19 populations from the 1000 Genomes Project (McVean et al., 2012),

and over 900 samples from 84 populations from the Human Origins dataset (Lazaridis et al. Nature 2014).

Second, we examined samples from a proprietary AncestryDNA reference collection as well as
AncestryDNA samples from customers who had previously consented to research. Most of the candidates
were selected from the last two groups only after their family trees confirmed that they had a long family
history in a particular region or within a particular group. A small number of candidates were selected
without a deep family tree, but these passed the rigorous vetting process outlined below. Although it was
not possible to confirm family trees for HGDP, Human Origins, and 1000 Genomes Project samples,
these datasets were explicitly designed to sample a large set of distinct population groups representing a

global picture of human genetic variation.

Reference Panel Candidates from Admixed Populations

In some parts of the world, indigenous people carry DNA from populations originating from continents
other than their own. For example, people of Amerindian descent in North and South America may also
have some ancestry from Europe and Africa. When creating reference panel regions reflecting
geographic regions for the Americas and Oceania, we wanted to use only the parts of the genome with
ancestry from the indigenous populations. We did this by looking at our previous region assignments and

choosing only the segments of DNA (or windows) where both chromosomes had assignment to a region


https://reich.hms.harvard.edu/sites/reich.hms.harvard.edu/files/inline-files/2014_Nature_Lazaridis_EuropeThreeAncestries.pdf

corresponding to the indigenous population. So, whereas most of our regions use DNA from the entire
genome of each reference panel candidate, when creating reference panels for populations in areas that
are now admixed we only use a fraction of each person’s genomes. The regions where we employ this

approach are:

Indigenous Americas—Bolivia & Peru
Indigenous Americas—Colombia & Venezuela
Indigenous Americas—Mexico

Indigenous Americas—North

Indigenous Americas—Yucatan Peninsula
Indigenous Americas—Central

Indigenous Americas—Chile

Indigenous Americas—Ecuador

Indigenous Americas—Panama & Costa Rica
Indigenous Eastern South America
Indigenous Puerto Rico

New Zealand Maori

Aboriginal & Torres Strait Islander

Guam

Hawaii

Samoa

Tonga

For two other regions, Indigenous Cuba and Indigenous Haiti & Dominican Republic, we used windows
where only one chromosome had assignment to a region corresponding to the indigenous population. We
then combined single chromosomes from two different people in the same window. We did this to create a

window homozygous for the indigenous region assignment.

2.3 Reference Panel Quality Control

For each sample, we analyzed a set of approximately 300,000 SNPs that are shared between the Illlumina
OmniExpress platform and the lllumina HumanHap 650Y platform, which was used to genotype HGDP
samples. After samples with large amounts of missing data were removed, we filtered out those which

were likely to degrade the performance of the reference panel. Samples were typically removed because



they were closely related to another reference sample or the underlying genetic information about a

sample’s origins disagreed with the family tree data.

When we infer ancestral regions, we are interested in computing the probability that a particular segment
of DNA, an observed haplotype, is most similar to a region in the reference panel (see Section 4 below).
The regions in the reference panel can provide clues as to where someone’s ancestors are from,

although they do not always directly indicate a person’s ancestral origins.

To compute the probability a haplotype is most similar to a reference panel population, we need to
estimate the frequency of this haplotype in each population. This requires that people in the reference
panel not be closely related. DNA segments shared as a result of recent ancestry, as identified through
identity by descent (IBD), do not represent independent haplotypes in a population. Retaining these
shared segments can distort the estimates of haplotype frequencies in a population. To avoid this bias, we
remove shared segments for candidates that share more than 20 cM of IBD DNA. Details about our

approach for detecting shared segments of IBD DNA can be found in our AncestryDNA Matching White
Paper.

Next, we remove samples from the reference panel candidate set when the genetic data disagrees with
what that person has reported about their origins—when underlying genetic information disagrees with
the pedigree data. We identify these outliers using two approaches: (1) we identify clear outliers using our
previous reference panel version, and (2) we use principal component analysis (PCA). PCA is frequently
used for exploratory data analysis in population genetics research (Jackson 2003). When applied
correctly to genotype data, PCA can capture the genetic variation separating distinct populations
(Patterson 2006).

We apply PCA to the samples that have made it through the previous screening processes and plot the
early stages of the analysis, the “first four principal components,” as a series of scatter plots. We color
each sample by its country of origin, determined by pedigree for Ancestry samples and by sample label

for public samples (see Figure 2.2).


https://www.ancestrycdn.com/support/us/2020/08/matchingwhitepaper.pdf
https://www.ancestrycdn.com/support/us/2020/08/matchingwhitepaper.pdf
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Figure 2.2: PCA Analysis on European Panel Candidates. Scatter plot of the first two components from a principal component
analysis (PCA) of candidate European samples for the AncestryDNA reference panel. Visual inspection of PCA is useful for
numerous aspects of data QC. First, it can be used to identify individual outliers, such as the Italian samples (green squares) that
appear near the Portugal and Spain (yellow and blue triangles, respectively) cluster. It can also be useful for identifying poor sample
grouping. Finally, it can reveal regions where there is limited genetic separation and clusters overlap (e.g., England, Ireland, Wales,

and Scotland clusters) and regions that can be further subdivided.

Each population tends to form a cluster of points (each point is a sample) in the scatter plot. This is
because points that are more genetically similar are closer in PCA space. Helpfully, these clusters of
points tend to match geography as well because most people are genetically more similar to others from
nearby. Furthermore, these plots quickly reveal outlier samples that are not near other samples from the
same population. For example, the green squares near the yellow and blue triangles indicate samples

with family trees from Italy whose DNA is more similar to people from Portugal and Spain. These are



examples where the specified population of origin disagrees with the genetic origin represented in PCA
space. We also use a related approach called UMAP (Uniform Manifold Approximation and Projection) to

visualize population structure and identify outliers (Diaz-Papkovich 2019).

We visually inspect candidates for removal based on a scatterplot like the one in Figure 2.2. Because
different collections of samples reveal different amounts of population structure, PCA and outlier removal
are repeated for different subsets of data. We first remove outliers at the global level (all samples
together), then at the continental level (e.g., outliers in a PCA using only European samples), then at the
regional level (e.g., outliers in a PCA of all Scandinavian samples), and finally at the population level (e.g.,

outliers from a PCA of Norway).

2.4 Iterative Reference Panel Refinement

After removing PCA outliers, we divide our global reference panel into populations corresponding to
distinct genetic clusters in the PCA plots. Before using the reference set to infer the ancestral regions of
AncestryDNA customers, we first determine its quality by measuring the performance of our inferences on
the reference set itself. This tells us how our method performs on samples that by definition are 100% of a

single ancestral region.

To do this, we employ a cross-validation approach. Specifically, we remove 5% of samples from the
reference panel and infer their origins using the remaining 95% of samples as the new reference panel.
We repeat this process 20 times, each time removing a different 5% of the panel and estimating their
ancestral regions using the remaining 95%. We then look at the average predicted results for samples
from each region in the reference set using the results of these cross-validation experiments. Figure 2.3

shows the results of this experiment as box plots.
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Figure 2.3: 20-fold cross-validation analysis of the Ancestral Regions 2023 reference panel. Here we plot the results of an
experiment in which 5% of samples are removed from the reference panel, and their regions are inferred using the remaining (95%)
panel samples. Each boxplot represents the distribution of estimated results for all samples from a given region (75%, 50%, and
25% percentiles of estimated results). 76% of our regions have an average accuracy of 76% or greater. However, there are
exceptions. In particular, our average prediction accuracy for samples Burusho and Bengal are not quite as high. There are many
factors affecting the accuracy of these numbers, most importantly the number of reference samples in the panel for each region and

the genetic distinctness of each region.



The purpose of this analysis is twofold. First, reference panel samples with extremely poor performance in
the cross-validation analysis are removed, as they may poorly represent their ancestral region of origin.
Second, the cross-validation experiments allow us to demonstrate our ability to accurately infer the
ancestral regions of our reference panel samples using our method (see section 3) and thus help us
redefine population boundaries. For example, we may merge two populations if performance in the

cross-validation experiment is poor in each group but is found to be better in a merged group.

After performing several rounds of reference panel refinement based on cross-validation experiments, we
settled on dividing our latest reference panel into 88 global regions. These regions are described in

further detail below.

2.5 Updated Reference Panel

The updated AncestryDNA ancestral regions reference panel contains 71,306 samples carefully selected
as described above to represent 88 global regions (Table 2.1), each with a unique genetic profile. As a

comparison, our previous panel of 68,714 samples represented 84 distinct global regions.

Table 2.1: The Final AncestryDNA 2023 Ancestral Regions Reference Panel

Region Number of Samples

Aboriginal & Torres Strait Islander 54
Aegean Islands 1111
Anatolia & the Caucasus 426
Arabian Peninsula 208
Baltics 237
Basque 118
Bengal 291
Benin & Togo 319
Burusho 25
Cameroon, Congo & Western Bantu Peoples 502
Central & Eastern China 359
Central & Southern Philippines 300

Central Asia—South 622



Cyprus

Dai

Eastern Bantu Peoples

Eastern Europe & Russia

Eastern European Roma

Egypt

England & Northwestern Europe
Ethiopia & Eritrea

Finland

France

Germanic Europe

Greece & Albania

Guam

Hawaii

Indigenous Americas—Bolivia & Peru
Indigenous Americas—Colombia & Venezuela
Indigenous Americas—Mexico
Indigenous Americas—North
Indigenous Americas—Yucatan Peninsula
Indigenous Americas—Central
Indigenous Americas—Chile
Indigenous Americas—Ecuador
Indigenous Americas—Panama & Costa Rica
Indigenous Arctic

Indigenous Cuba

Indigenous Eastern South America
Indigenous Haiti & Dominican Republic
Indigenous Puerto Rico

Iran/Persia

Ireland

Ivory Coast & Ghana

Japan

Jewish

282
90
179
1709
300
396
2291
131
366
5305
3408
638
157
363
269
3117
581
1985
316
2076
539
662
466
36
9559
2671
1994
3601
1255
755
315
202
447



Khoisan, Aka & Mbuti Peoples
Korea

Levant

Mainland Southeast Asia
Mali

Malta

Maritime Southeast Asia
Melanesia

Mongolia & Central Asia—North
Nepal & the Himalayan Foothills
New Zealand Maori

Nigeria

Nigeria—East Central
Nilotic Peoples

Northern Africa

Northern Asia

Northern China

Northern India

Northern Italy

Northern Philippines
Norway

Portugal

Samoa

Sardinia

Scotland

Senegal

Somalia
Southern Bantu Peoples
Southern China

Southern India

Southern ltaly

Southern Japanese Islands

Southwestern China

59
294
271
516
504

97
107

66
828
394
223
587
461
243
438

41
245
803

1157
295
829

1207
112
117

1737
186

44
220
278
122

1651

79

275



Spain 965

Sweden & Denmark 1289
The Balkans 1505
Tibetan Peoples 199
Tonga 166
Vietnam 246
Wales 880
Western China 237
Western Philippines 300
Total 71,306

We discuss more detailed tests of the performance of the 2023 reference panel in Section 4. For details

of the method AncestryDNA uses for inferring ancestral regions, see Section 3.

3. AncestryDNA Region Inference

3.1 Introduction

After establishing and validating the reference panel, the next step is to estimate a customer’s ancestral
regions by comparing nearly 300,000 selected single nucleotide polymorphisms (SNPs) from their DNA to
those of the reference panel. We assume that an individual’s DNA is a mixture of DNA from some
combination of the 88 populations represented in the reference panel. One example mixture is illustrated
in Figure 3.1, where, because of recombination, a customer inherits stretches of DNA from his or her four

grandparents who, in this example, each come from four “single source” reference populations.

Because DNA is passed down from one generation to the next in long segments, it is likely that the DNA
at two nearby loci in the genome were inherited from the same person and so the same population (for

more details on DNA inheritance see our DNA Matching White Paper). This means we can get more

accurate results by looking at multiple nearby SNPs together as a group, or haplotype, instead of looking

at each SNP in isolation. Our method takes advantage of this to greatly improve our estimates.


https://www.ancestrycdn.com/support/us/2020/08/matchingwhitepaper.pdf

Our approach for estimating a customer's ancestral regions assumes that each segment of their genome
comes from one of the 88 populations in the reference panel. We divide the customer’s genome into
1,001 windows, and our approach assumes that the DNA inherited from each parent in each window
comes from exactly one population (the windows are small enough that this will almost always be true).
We compare the customer's DNA to that of our reference panel in each window, and combine information
from all the windows to estimate what overall portion of the customer’s genome came from each

population using a hidden Markov model (HMM), described in Sections 3.3-3.5 below.

Customer’s grandparents

T- _
|
|
|
|
|
|

Customer's
parents

———7r——-
|

Customer’s genome

————— ]

Figure 3.1: Inheritance of DNA from different populations. On the left, we present a three-generation genetic family tree. For
each individual, we show two vertical bars representing the two copies of a single chromosome present in each individual. These
bars are colored to show the reference population from which they inherited their DNA. Each of the four grandparents (solid bars,
top row) has inherited 100% of their DNA from a single population that is different from the other three. The DNA is passed forward
to the parents and finally to the customer, who, through the process of recombination and assortment, ends up inheriting a shuffled
set of chromosomes from each parent. The colors show that the customer’s DNA is a mixture of the DNA inherited from their four
grandparents, with long stretches inherited from the same grandparent. On the right, we show that to infer a customer’s ancestral
regions, we divide the customer’s genome into small windows (represented by black horizontal lines). For each window we assign a
single population to the DNA within that window inherited from each parent, one population for each parental haplotype. Each

window gets a population assignment based on how well it matches genomes in the reference panel.



3.2 Phasing SNP Data

At AncestryDNA, we use microarrays to obtain DNA data from customer samples. We look at
approximately 700,000 individual locations of DNA (SNPs) on chromosomes 1-22 and the X chromosome
and determine the nucleotides at each position. It is important to understand that every person inherits
two alleles, one from each parent, at each of these 700,000 sites. For example, we may seean Aanda T
at position 1, a G and a G at position 2, and so on. A crucial step in the method is to separate which
letters were inherited from different parents—a process called phasing. We use a new technology we call
SideView™ to separate DNA inherited from each parent across the entire genome. When separated, we
can infer the ancestral regions of DNA inherited from each parent individually and independently using the

approximately 300,000 SNPs that are shared with all members of the reference panel.

SideView™ uses DNA shared with distant relatives across the genome to aid in the phasing. The
correctness of the DNA phasing for an individual therefore relies, in part, on that person sharing enough
DNA with other people in our database. Since this is not always the case, we design the hidden Markov
model (HMM) we use for assigning regions to allow for incorrect phasing, although doing so complicates
the model significantly. In the next section, we explain how an HMM is useful in inferring regions, first with
a model to analyze one parent individually, and then we show how we extend that model to account for

phase error.

3.3 Principles of a Hidden Markov Model

Our goal is to assign one of the populations from our reference panel to each window of the genome and
to each parent (i.e., the DNA a customer inherited from each parent). A hidden Markov model is
well-suited for this task because its strength is that it can represent thousands of interrelated variables but
still perform efficient inference—using a technique called dynamic programming—as long as each
variable depends on only a few others. An HMM is a set of states and transitions connected as a directed
acyclic graph (the transitions move forward along the genome and never cycle back). Each transition is
associated with a probability, and each state has an emission probability, which allows the HMM to
compute the posterior probability (i.e., taking all populations and windows into account) of individual
states, individual transitions, and paths through the model. Figure 3.2 illustrates an HMM representing the
DNA inherited from one parent for three reference populations (represented by green, yellow, and red)

and six windows (our complete analysis uses 88 populations and 1,001 windows). It also shows a path



through the model (the thick blue transitions). We use HMMs to infer the most likely path (called the
Viterbi path), which assigns exactly one population to each window of the genome. We also use HMMs to
take path samples—alternative paths that are also likely—to get a better idea of how much the

assignment to each population might vary according to the model.

Corresponding Window:
1 2 3 4 5 6
Start
State

Figure 3.2: The states and transitions of an HMM representing the possible populations that explain the DNA inherited from
one parent in each of several windows. This illustration includes three populations (green, yellow, and red), and six windows. The
arrows represent transitions between states, and each transition will have an associated probability. By using the transition
probabilities, an HMM can compute the likelihood of each of these states and determine the most likely path through the model

(illustrated by the bold blue arrows), which assigns one population to each window across the genome.

The transition probabilities in this HMM depend on how often a population assignment should change,
and, when they do change, how likely the new population is to be chosen. A transition to the same
population is generally more probable in our model because the population that explains the DNA
inherited from a parent is likely to be the same for several consecutive windows. However, the number of
populations varies from person to person. Our HMM learns the probability of changing population states
from the genotype data. When a transition does change populations, the transition probability depends
also on the proportion throughout the genome of the population being transitioned to, which our approach

also learns for each individual person.

The state emission probabilities in this HMM depend on the similarity between the DNA inherited from the
parent and that of a reference panel corresponding to the population the state represents. We describe

how we measure this similarity in Section 3.4 below.



3.4 Emission Probabilities

Determining how likely the DNA in a window came from a population (the emission probability) is a

complicated process and is described in more detail in our paper Ancestry Inference Using Reference

Labeled Clusters of Haplotypes.

Briefly, our approach includes the following steps:

l. Create haplotype models for each window. Using an ethnically-diverse set of about 50,000
individuals, we infer BEAGLE (Browning 2007) haplotype cluster models for each window.

Il. Annotate the reference panel. The states in the BEAGLE models represent clusters of similar
haplotypes. We wish to associate those clusters with populations. Because we are confident in
the geographic origin of members of the reference panel, we are able to calculate the probability
that a haplotype from a given population is represented by a particular haplotype cluster.

[I. Assign haplotype clusters to the test sample and aggregate the annotations. Given a
phased customer genotype, we observe which haplotype clusters the genotype belongs to and
base the emission probabilities for a population on the weighted average annotation (how often
the population reference panel belongs to the haplotype cluster, weighted so that each SNP in the

window contributes equally).

HMMs are used in a number of existing approaches for estimating ancestral proportions (Maples 2013).
The key part of our method is step lll, where we use rich haplotype models in each window, annotated
with population labels from the haplotypes in our reference panel, to assign a likelihood over all
population labels to the haplotypes in our test sample. It is worth noting that our method lends itself to
high-throughput application, as steps | through Il above—learning the haplotype models from a large
training set and then annotating them with the reference panel populations—need only be carried out

once.

3.5 Accounting for Phase Error

We use the HMM described above (Figure 3.2) to identify populations whose probability of assignment is
virtually zero for one parent or the other, and we remove those from further consideration, but our final
estimates are based on a more complicated HMM that simultaneously explains both haplotypes inherited

from the parents. We need this more complicated model because we cannot be certain that every


https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-021-04350-x
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-021-04350-x

genome is completely separated into DNA inherited from each parent, since SideView™ cannot phase in

places where an individual has no DNA matches.

ol

|

DA LA U RO iﬂ]

Figure 3.3: State transitions in an HMM representing K=3 populations. The HMM we use in practice explains the DNA inherited
from both parents simultaneously. This figure illustrates the states in a model with the same three (green, yellow, red) populations as
the HMM in Figure 3.2. There are KxKx2 states in each window. Each state represents the population inherited from parent 1 (top
color of each state), parent 2 (middle), and whether or not parent 1 corresponds to haplotype 1 (bottom). Only one state is shown on
the left, and possible transitions to all states in the next window (right). We only consider states such that the DNA inherited from at

least one parent keeps the same population assignment.

Figure 3.3 shows the set of states necessary for the HMM we use. Each state represents the population
that explains the DNA inherited from both parents, and we also assign one parent to haplotype 1 in the
phased data and the other parent to haplotype 2 and allow those phase assignments to change from
window to window. The resulting HMM has many more states, and each state represents the population

that explains parent #1's DNA (K possible values, if there are K populations), the population that explains



parent #2's DNA (K possible values), and which haplotype corresponds to which parent (2 possible
values). The HMM has KxKx2 states for each genomic window and all possible transitions between them
such that, at most, one parent's state changes population. While the constraint to one parent changing
populations is consistent with biology—recombination events in different parents are independent—it is
put in place mostly for practical reasons of efficient inference. The transition probability in this HMIM
(Figure 3.3) depends on two additional variables: the probability of changing phase from window to

window and the probability of changing back. These values are also learned for each individual.

The parameters of the HMM are set based on several iterations of an expectation-maximization algorithm
based on a standard HMM learning approach called Baum-Welch. For each individual, the algorithm
learns (i) the probability of changing populations (for each parent), (ii) the overall distribution of population
assignments (for each parent), (iii) the probability of changing phase (and changing back). The emission
probabilities for each state are fixed throughout the process. Although the model allows for phase error,
the model most often learns that the optimal estimate includes no phase corrections, and therefore the
results for most Ancestry DNA customers are based on the SideView™ phase and parent assignments

exactly.

After learning, we are able to compute through our HMM model:

1. The Viterbi path through the model. This is the single most likely path, according to the
parameters of the model, which assigns one population to the DNA inherited from each parent in
each window of the genome.

2. Probabilistic path samples through the model. These paths also assign one population to each
parent in each window, and they are only slightly less likely (according to the model) than the
Viterbi path, so they help describe how much or how little of a given population may still be

consistent with the individual's DNA.

We report the sum population assignment for each parent according to the most likely path and report a
most probable range based on 1,000 path samples taken from the model. These ranges are adjusted

based on how well path samples perform on test data (see Section 4.4).

4. Assessing Performance

After developing and optimizing both the calculation process and the reference panel, the final step is to

determine how well they perform together at assigning ancestral regions. Basically, we see how close our



process gets to the right answer through rigorous testing using a wide variety of test cases with known

ancestral origins.

4.1 Cross-Validation

We evaluate the performance of our process by running it on two different test cases where we know
what the correct answer should be: single-origin individuals (including synthetic single-origin individuals)
from the reference panel and simulated individuals with mixed origins. We gauge its effectiveness by

seeing how close we get to the true ancestral regions.

Single-origin individuals: We use two different sets of single-origin individuals in our cross-validation
studies. The first are those for whom we utilize their entire genome as a reference for a particular region.
These people have a long family history in a single region and represent a typical person from that region.

By definition, these individuals in our reference panel each have 100% of a single region.

This approach does not work for the reference panel regions where we used the indigenous DNA of
admixed individuals. For these reference panel regions, primarily from the Americas and Oceania, we
created synthetic single-origin individuals by piecing together genotype sequences that represent
indigenous ancestry from multiple individuals. These synthetic single-origin individuals are then used to

evaluate the accuracy of our method.

We evaluate our process by running 20-fold cross-validation experiments using these single-origin
individuals from our reference panel. For example, if we had 100 people in each reference panel group,
we would take 5 from each of the 88 groups and run the algorithm on these 440 samples using the
remaining 8,360 individuals as the reference group. Then a different 5 would be taken from each group

and the process repeated 20 times so that every individual in the reference panel is tested.

Overall we observe that the updated process correctly assigns an average of 85.5% of the DNA to the
correct region for single-origin individuals from our reference panel (Figure 2.3). We predicted at least

97% of the assignment from the correct region for the following groups:

e Aboriginal & Torres Strait Islander
e Cameroon, Congo & Western Bantu Peoples

e Eastern European Roma



e Guam

e Indigenous Americas—Bolivia & Peru

e Indigenous Americas—Colombia & Venezuela
e Indigenous Americas—Mexico

e Indigenous Americas—North

e Indigenous Americas—Yucatan Peninsula
e Indigenous Americas—Chile

e Indigenous Americas—Ecuador

e Indigenous Arctic

e Indigenous Cuba

e Indigenous Haiti & Dominican Republic

e Indigenous Puerto Rico

e Jewish

e Khoisan, Aka & Mbuti Peoples

e Melanesia

e New Zealand Maori

e Southern Bantu Peoples

e Tibetan Peoples

For some regions, such as Bengal and France, the numbers are not as high, with average assignments of
56% and 58% to the correct region, respectively. However, even if the prediction accuracy falls short of
100% for some regions, the remaining results are still assigned to nearby regions. For example,
individuals from Bengal might get some assignments to Southern India, and individuals from France might

get some level of assignment to England & Northwestern Europe (see Figure 4.1)
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Figure 4.1: Average estimated regions for single-origin individuals from each population. In this graph, each row represents
single-origin individuals from the population listed. Each column represents each of the possible 88 regions that the single-origin
individual might be assigned to. The graph is set up such that the matching individual and his or her results are aligned along the
diagonal line. If the algorithm worked perfectly, there would be only dark red (appearing black) boxes along the diagonal—red
represents 100% origin from that population. Any boxes that are not on the diagonal represent misassigned populations. This graph
also shows that certain regions can be confounded by other regions. For example, individuals with 100% Germanic Europe can be

assigned to England & Northwestern Europe and Sweden & Denmark.

Simulated individuals with mixed origins: We also evaluated the accuracy of our method for “simulated”

individuals of mixed ancestral origins. These test cases are simulations we construct with known mixtures

of regions. Each simulated, admixed individual can have as few as 2 or as many as 32 regions, with

various proportions. Since the true proportions are known, we can calculate precision and recall for each

region. Precision and recall are two important factors in evaluating our estimation process.



Precision can be thought of as how much of the reported assignment is true. For example, if our process
predicts an individual has 40% Northern Africa, but only 30% really is, then the process has a precision of
0.75 for our Northern Africa region. Mathematically, precision is expressed as the amount of correctly

identified value divided by the estimated value for that region.

Recall can be thought of as how much of the true region is called by the process. Keeping with our
Northern Africa example, imagine that an individual has 50% Northern Africa, but the algorithm predicts

40%. In this case, the process has a recall of 0.8 for our Northern Africa region.

With SideView™ technology we can also calculate the precision and recall for attributing regions to each
side of your family tree (region inheritance). For example, if our process predicts that an individual
inherited 100% of their total Northern Africa region from one side of their family, when in reality they
inherited 70% from one side and 30% from the other side, the region inheritance precision would be

calculated as 0.7.

Table 4.2 : Precision/Recall for each region calculated from results of simulated individuals with mixed

origins.

Inheritance |Inheritance
Region Precision Recall Precision Recall
Aboriginal & Torres Strait Islander 0.98 0.98 0.98 0.98
Aegean Islands 0.81 0.83 0.79 0.82
Anatolia & the Caucasus 0.63 0.76 0.63 0.75
Arabian Peninsula 0.78 0.93 0.77 0.93
Baltics 0.4 0.85 0.39 0.84
Basque 0.38 0.93 0.38 0.92
Bengal 0.95 0.51 0.94 0.51
Benin & Togo 0.73 0.88 0.73 0.87
Burusho 0.95 0.57 0.95 0.57
Cameroon, Congo & Western Bantu
Peoples 0.91 0.97 0.91 0.97
Central & Eastern China 0.73 0.79 0.73 0.79
Central & Southern Philippines 0.76 0.79 0.76 0.78
Central Asia—South 0.88 0.76 0.87 0.76




Cyprus 0.73 0.89 0.72 0.88
Dai 0.4 0.92 0.40 0.92
Eastern Bantu Peoples 0.87 0.85 0.87 0.85
Eastern Europe & Russia 0.74 0.82 0.73 0.80
Eastern European Roma 0.93 0.97 0.93 0.96
Egypt 0.98 0.75 0.97 0.75
England & Northwestern Europe 0.52 0.72 0.48 0.67
Ethiopia & Eritrea 0.81 0.96 0.81 0.96
Finland 0.73 0.96 0.73 0.96
France 0.92 0.51 0.89 0.50
Germanic Europe 0.83 0.65 0.80 0.63
Greece & Albania 0.68 0.83 0.67 0.81
Guam 0.98 0.98 0.98 0.97
Hawaii 0.97 0.96 0.97 0.96
Indigenous Americas—Bolivia & Peru 0.94 0.99 0.94 0.99
Indigenous Americas—Colombia &

Venezuela 0.97 0.98 0.97 0.98
Indigenous Americas—Mexico 0.97 0.98 0.96 0.97
Indigenous Americas—North 0.97 0.99 0.97 0.99
Indigenous Americas—Yucatan Peninsula 0.86 0.98 0.86 0.97
Indigenous Americas—Central 0.99 0.92 0.98 0.92
Indigenous Americas—Chile 0.98 0.98 0.97 0.98
Indigenous Americas—Ecuador 0.98 0.97 0.98 0.97
Indigenous Americas—Panama & Costa

Rica 0.94 0.95 0.94 0.94
Indigenous Arctic 0.97 0.99 0.97 0.99
Indigenous Cuba 0.99 0.99 0.98 0.99
Indigenous Eastern South America 0.99 0.94 0.98 0.95
Indigenous Haiti & Dominican Republic 0.98 0.99 0.98 0.99
Indigenous Puerto Rico 0.98 0.99 0.98 1.00
Iran/Persia 0.96 0.78 0.95 0.78
Ireland 0.48 0.95 0.47 0.93
Ivory Coast & Ghana 0.84 0.72 0.84 0.72
Japan 0.87 0.93 0.87 0.92




Jewish 0.92 0.99 0.92 0.98
Khoisan, Aka & Mbuti Peoples 0.87 0.98 0.87 0.98
Korea 0.75 0.93 0.75 0.92
Levant 0.63 0.88 0.63 0.87
Mainland Southeast Asia 0.96 0.63 0.96 0.63
Mali 0.91 0.96 0.91 0.96
Malta 0.91 0.88 0.90 0.88
Maritime Southeast Asia 0.87 0.66 0.87 0.66
Melanesia 0.92 0.98 0.92 0.98
Mongolia & Central Asia—North 0.99 0.77 0.98 0.77
Nepal & the Himalayan Foothills 0.98 0.9 0.98 0.90
New Zealand Maori 0.93 0.97 0.93 0.97
Nigeria 0.93 0.9 0.93 0.89
Nigeria—East Central 0.95 0.96 0.95 0.96
Nilotic Peoples 0.93 0.85 0.93 0.84
Northern Africa 0.91 0.9 0.91 0.90
Northern Asia 0.3 0.81 0.30 0.81
Northern China 0.53 0.75 0.52 0.74
Northern India 0.78 0.75 0.77 0.74
Northern Italy 0.78 0.66 0.76 0.64
Northern Philippines 0.74 0.79 0.73 0.79
Norway 0.64 0.9 0.62 0.88
Portugal 0.92 0.8 0.91 0.79
Samoa 0.65 0.8 0.65 0.80
Sardinia 0.63 0.81 0.62 0.80
Scotland 0.59 0.81 0.57 0.77
Senegal 0.88 0.96 0.88 0.96
Somalia 0.89 0.93 0.89 0.93
Southern Bantu Peoples 0.92 0.98 0.92 0.98
Southern China 0.74 0.86 0.74 0.86
Southern India 0.31 0.95 0.31 0.94
Southern ltaly 0.94 0.65 0.93 0.65
Southern Japanese Islands 0.83 0.96 0.83 0.95




Southwestern China 0.87 0.73 0.87 0.73
Spain 0.83 0.61 0.81 0.61
Sweden & Denmark 0.55 0.83 0.53 0.80
The Balkans 0.92 0.65 0.90 0.64
Tibetan Peoples 0.89 0.98 0.89 0.97
Tonga 0.8 0.69 0.80 0.69
Vietnam 0.78 0.89 0.77 0.89
Wales 0.65 0.93 0.64 0.91
Western China 0.92 0.54 0.91 0.54
Western Philippines 0.83 0.7 0.83 0.70

We found that the majority of our regions have precision and recall that are both greater than 0.75. The

following regions have both precision and recall exceeding 0.9:

e Aboriginal & Torres Strait Islander

e Cameroon, Congo & Western Bantu Peoples
e Eastern European Roma

e Guam

e Hawaii

e Indigenous Americas—Bolivia & Peru

e Indigenous Americas—Colombia & Venezuela
e Indigenous Americas—Mexico

e Indigenous Americas—North

e Indigenous Americas—Central

e Indigenous Americas—Chile

e Indigenous Americas—Ecuador

e Indigenous Americas—Panama & Costa Rica
e Indigenous Arctic

e Indigenous Cuba

e Indigenous Eastern South America

e Indigenous Haiti & Dominican Republic

e Indigenous Puerto Rico

e Jewish




e Mali

e Melanesia

e New Zealand Maori

e Nigeria—East Central

e Southern Bantu Peoples

Some regions, such as France and Bengal, have relatively lower recall, both 0.51. Some regions have
relatively low precision, such as Southern India (0.31), Northern Asia (0.30), Basque (0.38), Dai (0.40),
and Baltics (0.40).

Region inheritance precision and recall are slightly lower on average when compared with precision and
recall when both sides of the genome are considered together, 81.4 vs 81.9 and 84.9 vs 85.5 respectively.
This is because there will always be some additional error when trying to estimate which side of your
family tree you inherited a particular region from. In general, parsing your inheritance patterns by one side
of your family tree versus the other is a more difficult problem than when both sides of the tree are

considered together.

4.2 Region Assessment

To assess how our regions perform in different parts of the world and to help our customers interpret their
results, we can look at the results of people with deep genealogical roots back to the same country or part
of a country who are not included in our reference panel. To find these individuals, we use
customer-created family trees and look for customers who have consented to research and have all of
their ancestors from the same country. Ideally, we’d only look at people with all of their grandparents (or
older) from the same country, but due to low numbers for some countries we sometimes include people

where only their parents are from the same country.

Customers who are not in the reference panel and have deep trees tracing back to a single country are
expected to have high assignments to the regions associated with that country, and this is what we
generally find. For example, Figure 4.3A shows the average region assignments for 200 customers with
all four grandparents (or older) born in Germany. As you can see, while most of their assignment is to the

Germanic Europe region, other regions do appear in small but significant amounts. Figure 4.3B shows a



similar pattern for 200 customers with all four grandparents born in Korea. These analyses help ensure

that results for people from a region agree with expectations.
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Figure 4.3 Average region assignments based on grandparents’ birth location. Average region assignments for customers with

all four grandparents born in the same country. (A) Germany, (B) South Korea

We also use maps like the one shown in Figure 4.4 to ensure that region assignments make sense

geographically. The geographic distribution and amount of region assignments within a country can often

help make sense of otherwise surprising results. For example, in Figure 4.4 there is assignment to the

Scotland region in the Brittany area of France. This makes sense because of shared Celtic ancestry in



both Scotland and Brittany, where the Celtic language Breton is traditionally spoken. Scotland

assignments in England also likely reflect the history of Celtic ancestry in that area.
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Figure 4.4 Map of average Scotland results. Average results between 5% and 25% (darker blue) in Wales, England, and Ireland

and between 25% and 50% (light blue) in Brittany likely reflect shared Celtic ancestry.

These analyses help us understand the genetic diversity of the regions and allow us to better
communicate these results to our customers (e.g., even if all of a customer’s ancestors are German, the
customer can expect to see additional regions in their results). These analyses also aid us in prioritizing
future developments for further updates.



4.3 Regional Polygon Construction

We divide the world into 88 regions in our reference panel. Each region represents a population or group
of related populations with a unique genetic profile reflecting their shared ancestry. Where possible, we
use the known geographic locations of our samples to guide how we create the regions. Figure 4.5 shows
an example of the region assignment and geographic information used to define the polygon for our
England & Northwestern Europe region.
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Figure 4.5: Using geographical sample locations to draw regional polygons. Panel A shows the distribution of the England &
Northwestern Europe region predicted for a set of samples with geographic information. Samples are assigned to grids of 0.5
degrees longitude by 0.5 degrees latitude based on the average birth location of their ancestors’ grandparents. The color of each
grid squarepoint on the map represents the average England & Northwestern Europe assignment of samples from each grid. Panel
B shows the maps after filling in missing regions and smoothing the results. Panel C shows the information processed with
smoothing, creating the outlines representing the ancestry regions shown to customers. Panel D shows the final product version

after manual touch-ups.

In Figure 4.5A, we show the amount of our England & Northwestern Europe region assigned to a

combination of reference panel samples, customers with deep roots from the same country, and



noncustomer samples. Figure 4.5B shows the results after imputing values to fill in gaps and applying
smoothing methods to make the plot less spotty. It is clear from the plot that there is a gradient of this
assignment in this area that is centered in England that quickly tapers off in surrounding areas. For
example, the next level of concentration, represented by light blue in the image, is in northeastern France,
Belgium, the Netherlands, and Switzerland. The gradient continues to diminish as represented in purple,

with the borders reaching as far away as Northern Italy, Norway, and Portugal.

Manual edits are sometimes performed on polygons to better align them with geography like narrow
peninsulas or when the polygons may imply finer-scale population structure than the underlying genetic
data support. For example, the >25% polygon for the England & Northwestern Europe region on our
website (Figure 4.5D) connects the separate polygons in France and Switzerland seen in Figure 4.5C.
Additionally, polygons representing two of our regions—Jewish and Khoisan, Aka & Mbuti Peoples—have

hand-drawn components to describe minority populations that may not be explicitly defined by geography.

Importantly, these maps do not represent where we think a customer’s ancestors may be from. Instead,
the polygons broadly show how much assignment to each region is typically seen among people with
deep roots from a given location. Polygons can be thought of as an extension of the region name but can
more easily provide information than words alone. The polygons appear as nested zones with increasing
depth of shading representing differences in the average level of assignment. Each set of polygons is

accompanied by a summary of the history of the region.

The map below shows polygons for all 88 ancestral regions mostly based on the polygons with 50% or

more assignment, constructed as described above.



Figure 4.6: Map of 88 ancestral region polygons.

4.4 Reporting uncertainty of estimated values

Inferring a person’s ancestral regions is not an exact science. The percentage AncestryDNA reports to a
customer is the most likely percentage within a range of percentages. In this section, we discuss how we
calculate this range. It is important to keep in mind that at AncestryDNA we continue to build upon our

previous work to offer ever more accurate results to our customers.

For example, we might report someone as 40% England & Northwestern Europe with a range of 30-60%.
This means that they are most likely 40% England & Northwestern Europe but they could be anywhere

between 30% and 60% England & Northwestern Europe.

As discussed in Section 3, we run a genome-wide Viterbi estimate on a customer’s DNA sample and
report that back as the customer’s most likely result. In addition to the Viterbi estimate, we are able to
sample other results that, while themselves likely, are not guaranteed to be the most likely. The
assignment ranges we report are based on 1,000 samples of these non-Viterbi results and correspond to

the degree of uncertainty around the true result. For example, if a window has an 80% chance of being



from England & Northwestern Europe, then it has a 20% chance of being from some other region. The

reported range captures the uncertainty in the result across a customer’s DNA.

We devised a way, using the mean and standard deviation of 1,000 sampled results, to estimate the
range surrounding the Viterbi estimate reported to the customer. These ranges are specific to the
ancestral region in question and differ from person to person depending on their specific Viterbi
estimates. Our objective when defining this approach was to maximize the probability that the reported
range contains the true ancestry proportion (recall), while also maximizing precision by maintaining a

fairly narrow range.

We can test our process for calculating the range using simulated admixed individuals, like those used for
the cross-validation studies, to determine how often it correctly gets the known percentage within the
range. In other words, how often does the range overlap the known result. We find that the algorithm
performs very well for some populations and less well for others. Since we know the true result in the
simulated admixed individuals, we can incorporate correction factors specific for each population to
maximize the probability that the true result falls within the range.

A large range often reflects the challenges we face because geographically neighboring regions have
similar DNA. What this means is that if a customer’s result includes many neighboring regions, their
ranges will most likely be larger than if it contained more distant regions. For example, while we may be
fairly certain that a customer has 50% Korea and 50% Portugal assignment (and therefore small ranges),
we may be less sure about a customer who gets 50% Spain and 50% Portugal. It is easier to tell Korea
from Portugal, but harder to tell Portugal from Spain. This may be reflected in the larger ranges for the
second customer. But it is important to keep in mind that we are very confident of the European heritage
of customer two, we are just less certain about how much ancestry is derived from Portugal and how
much from Spain. It is worth noting that, in general, as we increase the precision of our regions (e.g.,
breaking Ireland & Scotland into two separate regions), the ranges may become larger, and this is
because DNA from neighboring regions is still very similar.



5. Future Refinement

While AncestryDNA is extremely proud of the updates in this release of its ancestral regions, we will
continue to improve the product over time. The availability of new data, the development of new
methodologies, and the discovery of new information relating to patterns of human genetic variation will

all enable future improvements to the product.

Figure 5.1: Improvement Cycle.

Each of the steps above represents a critical part of our procedure and development. Currently, we are
working to further expand our global reference panel for future updates. We have already begun
genotyping and analyzing samples for a future update, which will provide finer-grained estimates of
ancestral regions. We are also continuing our diversity initiative, which gathers DNA samples from
underrepresented populations around the world to expand the number of regions we can report back to

customers.

Simultaneously, we are also working to improve our algorithms for inferring ancestral regions. Future
updates may include improvements to our statistical methodology that will more fully leverage information

in genetic data to reveal even more details about population history. Along the way, we always perform



thorough testing, involving analyses like those described above. These tests inform the focus of our

improvements and help refine our improvements as necessary.

Each new release will represent a step forward in our ability to give our customers a complete description
of their genetic ancestry and inform them about their genetic origins. We hope that, like the entire team at

AncestryDNA, our customers will look forward to these future developments.
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