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Summary:

Reporting ancestral regions (“regions”) is one of several tools that AncestryDNA offers customers on their
journey to discover their heritage, ancestors, and family history. Ancestral regions is a feature that
connects users directly to the populations from which their ancestors likely came. This information can be
used in conjunction with ancestral journeys discovered through Genetic Communities, and with
relationships discovered through DNA Matching to better understand one’s more recent and distant past.

AncestryDNA employs a team of highly trained scientists with backgrounds in population genetics,
statistics, machine learning, and computational biology to develop a fast, sophisticated, and accurate
method for estimating genetic ancestral regions. The AncestryDNA science team has advanced the
science and technology behind the region results this year, producing an increase in both the overall
accuracy of the results, as well as the number of regions available for assignment (from 88 regions to
107). By adding these new regions, we provide even greater granularity to our members.

This white paper will delve into the science behind:

1. How our reference panel samples are chosen and the makeup of our 107 reference panels for 2024
2. How our algorithm works to estimate a customer’s genetic origins
3. Some of the results from our most recent advances for inferring ancestral origins from DNA

Glossary

Admixed— Describing an individual or population that has ancestry from multiple populations.

Allele— A variant in the DNA sequence. For example, a SNP (defined below) could have two alleles: A

or C.

Centimorgan (cM)— A unit of genetic length in the genome. Two genomic positions that are a

centimorgan apart have a 1% chance during each meiosis (the cell division that creates egg cells or

sperm) of experiencing a recombination event between them.

Chromosome— A large, inherited piece of DNA. Humans typically have 23 pairs of chromosomes with
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one copy of each pair inherited from each parent.

IBD— A term abbreviated from “Identity-by-descent.” When two individuals share DNA, we can say they

have DNA that is IBD, if there is evidence that they share that DNA because they inherited it from a

recent ancestor.

Genome— All of someone’s genetic information; the DNA on all chromosomes.

Genotype— A general term for observed genetic variation either for a single site or the whole genome.

For example, we can refer to the results for a customer from our microarray as a “customer’s genotype.”

Haplotype— A stretch of DNA along a chromosome containing a group of nucleotide polymorphisms.

Hidden Markov model (HMM)— A statistical model for determining a series of hidden states based on a

set of observations.

Locus/Loci— A location or locations in the genome. It could be a single site or a larger stretch of DNA.

Microarray— A DNA microarray is a way to analyze hundreds of thousands of DNA markers all at once.

Nucleotide— DNA is composed of strings of molecules called nucleotides (also called bases). There are

four different types, and they are usually represented by their initials: A, C, G, T.

Population— A group of people.

Phasing— The assignment of DNA to contiguous segments corresponding to the DNA inherited from

Mom or Dad. This is done with an algorithm.

Recombination— Before chromosomes are passed down from parent to child, each pair of

chromosomes usually exchange long segments between one another and then are reattached in a

process called recombination.

Reference Panel— A set of people whose DNA is typical of DNA from a certain place—people native to

a place or group. The DNA of these people is used as a representation of the typical DNA from this place

for the purposes of studying population genetics and history.

Single nucleotide polymorphism (SNP)— A single position (nucleotide) in the genome where different

variants (alleles) are seen in different people.

2. Constructing Population Reference Panels

2.1 Reference Panels are Critical to Calculate Ancestral Regions

The basic premise behind ancestral regions inference can be summarized as follows.Two haplotypes
from the same geographic region or the same population will share more DNA with one another than will

two haplotypes from different regions or groups. So two people with a historical connection to Portugal will

have more DNA in common than will a person from Korea with a person from Portugal.



In practice, region inference involves comparing a person’s DNA to the DNA of multiple reference
panels. A reference panel is composed of individuals whose DNA is representative of a population. Our

algorithm compares a person’s DNA segments to these reference panels to determine the best-matching

populations. If, for example, a section of a person’s DNA looks most similar to DNA of people in our

Norway reference panel, that section is said to be from Norway, and so on. The end result is a

genome-wide report where individual sections of DNA are associated with one of the 107 regions in our

reference panel. The similarity breakdown is provided as a total percentage breakdown, and also as a

per-parent and per-chromosome report.

The accuracy of our results depends on the quality of our reference panel. Because of this, AncestryDNA

has invested a significant amount of effort in collecting DNA data from populations across the globe and

developing the best possible set of reference samples.

The rest of Section 2 describes the steps taken to develop our current reference panel.

2.2 Developing Reference Panels in Regions of the World with Significant Amounts of Data

AncestryDNA has genome-wide genotype data for over 25 million customers from around the world.

Additionally, many people in our database have connected family trees to their DNA results, providing

invaluable contextual information about the origins of these individuals. The wealth of DNA and

genealogical information allows us to create robust reference panels for many global populations,

especially in regions of the world where our customers’ origins are concentrated.

However, it is problematic to rely solely on self-reported genealogical information from customer trees

when deciding what individuals to include in the reference panel and which populations they should

represent. Relying just on samples that have connected family trees would limit our number of reference

panel candidates too dramatically. As well, family trees can be difficult to verify, and can carry errors.

Therefore, we’ve adopted a strategy that is primarily driven by genetic relatedness (IBD-sharing) among

people and populations, while still incorporating information in the aggregate from ancestral region results

and family trees. Specifically, we leverage our Genetic Communities technology and the 2,900+ DNA

communities we have discovered as the bases for reference panels.

Genetic Communities is a method to identify networks of Ancestry members that are highly

interconnected due to sharing DNA from a common set of ancestors. We are also able to look at family
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tree information for these networks in aggregate to identify shared places of origin, patterns of movement,

statistically enriched surnames, and averaged region results. These data provide insight into the specific

identity and story of these genetically related groups.

Using the networks we discover as a basis for ancestral region reference panels has several benefits.

First, the networks are entirely driven by genetics and self-organized population structure. Relying on

patterns of genetic similarity between individuals in a group is preferable to hand-curating a set of

individuals to represent a population based on self-reported data such as origins, language, or ethnicity.

Second, when we do need to rely on information about origins, language, and ethnicity for identifying and

annotating the reference populations, we are using information that has been averaged from hundreds or

thousands of network members. By averaging the data, we remove the disproportionate effects of outliers

or the need to extensively verify several hundred individual records.

A complication factor is that individuals’ membership to these networks are non-exclusive. Specifically, an

individual may belong to multiple different networks, representing various branches of their family tree.

For example, if a person has one parent of Irish descent and another parent of Italian descent, they will

likely belong to both Irish and Italian networks. Using this individual in any Italian or Irish reference panel

would adversely impact the performance of our analysis.

In order to optimize our selection of reference panel candidates, we therefore adopted several filtering

approaches based exclusively on genetic data.

1. We mapped the networks to corresponding world regions, and regions with rich data were

selected for this reference panel development approach.

2. We considered reference panel candidates for each region and selected samples that were more

likely to descend from a single origin population, i.e., do not have recently admixed family origins.

We did this by filtering out individuals who had a weak genetic connection to their assigned

networks (based on their number of matches to other members of that network) and who were

assigned to multiple networks from different populations (e.g., Irish and Italian).

3. We filtered individuals based on their current genetic results, removing individuals with

exceptionally high levels of additional off-target regions. Specifically, we identified the most

common regions shared among individuals of each network, and through an iterative analysis,

determined specific region and percentage thresholds to ensure robust reference panels. For

example, consider that in England, most individuals with deep family roots to the south and east,

and who could be high quality reference panel candidates, will likely carry between 3-5%

Scandinavian ancestry. This is a result of the historical invasions of England by Germanic and



Viking tribes 1500 years ago. Despite these individuals having a genetic connection outside of

England, we would still want to consider them as reference panel candidates.

4. We filtered individuals who had a low number of matches with others in the network, and who had

a proportionally high number of matches to individuals in other networks. Specifically, for each

sample we calculated the number of matches to others in the network and to other networks, and

identified a percentile cutoff for these metrics, below which all individuals were excluded. The

effect was to remove individuals who showed a low level of genetic connectedness to the region

specifically and a high level of genetic connectedness to outside regions.

5. As a final check on the individuals selected for a region’s reference panel, we aggregated the

birth location data for these individuals and their ancestors and plotted the locations on a map.

We found strong signals of enrichment for ancestor birth locations in the geographic regions of

interest, and very little signal outside the region of interest.

Using the IBD-sharing and filtering approach outlined above, we identify the individuals who are best

suited to include in the reference panel. Given the large number of samples available at AncestryDNA, we

subsample to a maximum of 2000 individuals per reference panel to train our model (“training set”), along

with 500 testing samples to tune parameters (“testing set”), and 500 samples for final validation

(“validation set”).

2.3 Developing Reference Panels in regions with limited data

In some regions of the world, AncestryDNA has not yet acquired enough customer samples to rely on the

process described above (Section 2.2). In these regions, AncestryDNA relies on a collection of labeled

samples from worldwide populations to construct training, testing, and validation sets.

We build up this collection using several different data sources including:

● 1,000 samples from 49 worldwide populations from a public project called the Human Genome

Diversity Project (HGDP) (Cann et al. 2002; Cavalli-Sforza 2005)

● 2,500 samples from 19 populations from the 1000 Genomes Project (McVean et al., 2012)

● 900 samples from 84 populations from the Human Origins dataset (Lazaridis et al., Nature 2014).

● Proprietary AncestryDNA reference collections

● AncestryDNA samples from customers who consented to participate in the research project

https://support.ancestry.com/s/article/AncestryDNA-Research-Project?language=en_US


Once this collection has been compiled, we again use unsupervised techniques that leverage shared IBD

to identify groups of individuals with shared ancestry. We then use aggregated meta-data (e.g.,

self-reported ethnicity, spoken language) to identify the groups. We sample a subset of the total

individuals to include in our reference panel.

2.3 Developing Reference Panels in Regions with significant admixture

In some parts of the world, indigenous people carry DNA originating from more than one continent. For

example, people of Amerindian descent in North and South America may also have some ancestry from

Europe and Africa. When creating reference panels for the Americas and Oceania, we use only the parts

of the genome with ancestry from the indigenous populations. We do this by looking at our previous

assignments to select only the segments of DNA where both chromosomes have an assignment to an

indigenous population. So, whereas most of our regions use DNA from the entire genome of each

reference panel candidate, when creating reference panels for populations in areas that are now admixed

we only use a fraction of each person’s genomes. The regions where we employ this approach are:

Indigenous Americas–Bolivia & Peru

Indigenous Americas–Colombia & Venezuela

Indigenous Americas–Mexico

Indigenous Americas–North

Indigenous Americas–Yucatan Peninsula

Indigenous Americas—Central

Indigenous Americas—Chile

Indigenous Americas—Ecuador

Indigenous Americas—Panama & Costa Rica

Indigenous Eastern South America

Indigenous Puerto Rico

New Zealand Maori

Aboriginal & Torres Strait Islander

Hawaii

Samoa

Tonga



For two other regions, Indigenous Cuba and Indigenous Haiti & Dominican Republic, we use windows

where only one chromosome has assignment to the indigenous population. We then combine single

chromosomes from two different people in the same window. This creates a window homozygous for the

indigenous DNA.

2.4 Reference Panel Quality Control

For each sample, we analyze a set of approximately 300,000 SNPs that are shared between the Illumina

OmniExpress platform and the Illumina HumanHap 650Y platform (which was used to genotype HGDP

samples). Samples with large amounts of missing data are removed. We also remove samples which are

likely to degrade the performance of the reference panel. Samples can be removed because 1) they are

closely related to another reference sample, or 2) the underlying genetic information about a sample’s

origins disagrees with the sample labels, as determined through principal component analysis (PCA)

(Jackson 2003, Patterson 2006) and our previous genetic analyses (Figure 2.1).



Figure 2.1: PCA Analysis on European Panel Candidates. Scatter plot of the first two components from a principal component

analysis (PCA) of candidate European samples for the AncestryDNA reference panel. Visual inspection of PCA is useful for

numerous aspects of data QC. First, it can be used to identify individual outliers, such as the Italian samples (green squares) that

appear near the Portugal and Spain (yellow and blue triangles, respectively) cluster. It can also be useful for identifying poor sample

grouping. Finally, it can reveal regions where there is limited genetic separation and clusters overlap (e.g., England, Ireland, Wales,

and Scotland clusters) and regions that can be further subdivided.

2.5 Updated Reference Panel

The updated AncestryDNA ancestral regions reference panel contains 116,830 samples carefully

selected as described above to represent 107 global regions (Table 2.1), each with a unique genetic

profile. As a comparison, our previous panel of 71,306 samples represented 88 distinct global regions.



Table 2.1: The AncestryDNA Regions Reference Panel

Region Number of Samples

Senegal 124

Mali 336

Ivory Coast & Ghana 182

Benin & Togo 1138

Yorubaland 487

Central West Africa 497

Central Nigeria 700

North-Central Nigeria 536

Nigeria 416

Nigerian Woodlands 309

Cameroon 291

Western Bantu Peoples 184

Twa 125

Southern Bantu Peoples 148

Eastern Bantu Peoples 121

Nilotic Peoples 163

Ethiopia & Eritrea 89

Somalia 30

Khoisan, Aka & Mbuti Peoples 41

Northern Africa 636

Egypt 1281

Arabian Peninsula 1260

Levant 2000

Cyprus 1881

Anatolia & the Caucasus 2000

Iran/Persia 2000

Lower Central Asia 928

Northern Iraq & Northern Iran 1092

Burusho 17

Indo-Gangetic Plain 2000

Western Himalayas & the Hindu Kush 1048



Gujarat 998

Gulf of Khambhat 304

Southern India 262

Southwest India 718

The Deccan & the Gulf of Mannar 815

Bengal 1146

Nepal & the Himalayan Foothills 264

Tibetan Peoples 133

Northern Asia 29

Mongolia & Upper Central Asia 552

Korea 2000

Japan 136

Southern Japanese Islands 640

Northern China 245

Western China 237

Southwestern China 275

Central & Eastern China 359

Southern China 278

Dai 60

Mainland Southeast Asia 344

Maritime Southeast Asia 73

Vietnam 2000

Northern & Central Philippines 2000

Central & Southern Philippines 2000

Luzon 2000

Western Visayas 181

Guam 85

Melanesia 44

Aboriginal & Torres Strait Islander 54

Tonga 166

Samoa 112

Hawaii 363

New Zealand Maori 223

Indigenous Arctic 24



Indigenous Americas–North 1985

Indigenous Americas–Mexico 581

Indigenous Americas–Yucatan Peninsula 316

Indigenous Americas—Central 2076

Indigenous Americas—Panama & Costa Rica 466

Indigenous Cuba 9559

Indigenous Haiti & Dominican Republic 1994

Indigenous Puerto Rico 3601

Indigenous Americas–Colombia & Venezuela 3117

Indigenous Americas—Ecuador 662

Indigenous Americas–Bolivia & Peru 269

Indigenous Americas—Chile 539

Indigenous Eastern South America 2671

Ashkenazi Jews 2000

Sephardic Jews 723

Finland 2000

Sweden 2000

Denmark 1689

Norway 2000

Iceland 295

Baltics 2000

Central & Eastern Europe 2000

Russia 1590

The Balkans 2000

Eastern European Roma 852

Greece & Albania 2000

Aegean Islands 1305

Malta 1673

Sardinia 168

Southern Italy & the Eastern Mediterranean 2000

Northern Italy 2000

France 2000

Germanic Europe 2000

The Netherlands 2000



Basque 429

Spain 2000

Portugal 2000

England & Northwestern Europe 2000

Cornwall 1090

Wales 2000

Scotland 2000

Ireland 2000

Total 116830

3. AncestryDNA Ancestral Regions Algorithm

3.1 Algorithm Intuition and Assumptions

After establishing the reference panels, the next step is to train and tune the algorithm that infers a

customer’s ancestral regions by comparing nearly 300,000 selected single nucleotide polymorphisms

(SNPs) from their DNA to those of the reference panel. In this comparison algorithm, we assume that an

individual’s DNA is a mixture of DNA from some combination of the 107 identified populations. To

illustrate this concept, we show a cartoon example in Figure 3.1, where, because of recombination, a

customer inherits stretches of DNA from her four grandparents who, in this example, each come from four

“single source” reference populations.

Because DNA is passed down from one generation to the next in long segments, it is likely that the DNA

at two nearby loci in the genome were inherited from the same person and therefore the same population

(for more details on DNA inheritance see our matching white paper). This means we can get more

accurate results by looking at multiple nearby SNPs together as a haplotype, instead of looking at each

SNP in isolation. Our algorithm takes advantage of this to greatly improve our estimates.

Our approach divides the customer’s genome into 1,001 windows and assumes that the DNA inherited

from each parent in each window comes from exactly one population (the windows are small enough that

this will almost always be true). We compare the customer's DNA to the reference panels for each

window, and combine information from all the windows to estimate what overall portion of the customer’s
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genome came from each population using a hidden Markov model (HMM), described in Sections 3.3-3.5

below.

Figure 3.1: Inheritance of DNA from different populations. On the left, we present a three-generation genetic family tree. For

each individual, we show two vertical bars representing the two copies of a single chromosome present in each individual. These

bars are colored to show the reference population from which they inherited their DNA. Each of the four grandparents (solid bars,

top row) has inherited 100% of their DNA from a single population that is different from the other three. The DNA is passed to the

parents and finally to the customer, who, through the process of recombination and assortment, ends up inheriting a shuffled set of

chromosomes from each parent. The colors show that the customer’s DNA is a mixture of the DNA inherited from their four

grandparents, with long stretches inherited from the same grandparent. On the right, we show that to obtain a customer’s ancestral

regions, we divide the customer’s genome into small windows (represented by black horizontal lines). For each window we assign a

single population to the DNA within that window inherited from each parent, one population for each parental haplotype. Our

algorithm will assign a population to each window based on how well it matches genomes in the reference panel.

3.2 Phasing SNP Data

At AncestryDNA, we use microarrays to obtain DNA data from customer samples. We look at

approximately 700,000 individual locations of DNA (SNPs) on chromosomes 1-22 and the X

chromosome. It is important to understand that every person inherits two alleles, one from each parent, at

each of these 700,000 sites, and that we read these sites independently. For example, we may see an A



and a T at position 1, a G and a G at position 2, and so on. A crucial step in region inference is to

separate which letters were inherited from different parents—a process called phasing. Our cutting-edge

technology SideView separates DNA inherited from each parent across the entire genome. Once

separated, we infer the ancestral regions inherited from each parent using the approximately 300,000

SNPs that are shared with all members of the reference panel.

SideView™ uses DNA shared with distant relatives across the genome to aid in the phasing. The

correctness of the DNA phasing for an individual therefore relies, in part, on that person sharing enough

DNA with other people in our database. Since this is not always the case, we design the hidden Markov

model (HMM) we use for region inference to allow for incorrect phasing. In the next section, we explain

how an HMM is useful in region inference, first with a model to analyze one parent individually, and then

we show how we extend that model to account for phase error.

3.3 Principles of a Hidden Markov Model

Our goal is to assign each window of the genome to two of the 107 reference panels (one for each

parent). A hidden Markov model is well-suited for this task because it can represent thousands of

interrelated variables but still perform efficient inference—using a technique called dynamic

programming—as each variable depends on only a few others. An HMM is a set of states and transitions

connected as a directed acyclic graph (the transitions move forward along the genome and never cycle

back). Each transition is associated with a probability, and each state has an emission probability, which

allows the HMM to compute the posterior probability (i.e., taking all populations and windows into

account) of individual states, individual transitions, and paths through the model. Figure 3.2 illustrates an

HMM representing the DNA inherited from one parent for three reference populations (represented by

green, yellow, and red) and six windows (our complete analysis uses 107 populations and 1,001

windows). It also shows a path through the model (the thick blue transitions). We use HMMs to infer the

most likely path (called the Viterbi path), which assigns exactly one population to each window of the

genome. We also use HMMs to take path samples—alternative paths that are also likely—to get a better

idea of how much the assignment to each population might vary according to the model.

https://support.ancestry.com/s/article/SideView-Technology?language=en_US


Figure 3.2: The states and transitions of an HMM representing the possible populations that explain the DNA inherited from

one parent in each of several windows. This illustration includes three populations (green, yellow, and red), and six windows. The

arrows represent transitions between states, and each transition will have an associated probability. By using the transition

probabilities, an HMM can compute the likelihood of each of these states and determine the most likely path through the model

(illustrated by the bold blue arrows), which assigns one population to each window across the genome.

The transition probabilities in this HMM depend on how often a population assignment should change,

and, when they do change, how likely the new population is to be chosen. A transition to the same

population is generally more probable in our model because the population that explains the DNA

inherited from a parent is likely to be the same for several consecutive windows. However, the number of

populations varies from person to person. Our HMM learns the probability of changing population states

from the genotype data. When a transition does change populations, the transition probability depends

also on the proportion throughout the genome of the population being transitioned to, which our approach

also learns for each individual person.

The state emission probabilities in this HMM depend on the similarity between the DNA inherited from the

parent and that of a reference panel corresponding to the population the state represents. We describe

how we measure this similarity in Section 3.4 below.

3.4 Emission Probabilities

Determining how likely the DNA in a window came from a population (the emission probability) is

described in more detail in our paper Ancestry Inference Using Reference Labeled Clusters of

Haplotypes.

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-021-04350-x
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Briefly, our approach includes the following steps:

I. Create haplotype models for each window. Using a set of about 50,000 individuals

representing diverse populations, we infer BEAGLE (Browning 2007) haplotype cluster models for

each window.

II. Annotate the reference panel. The states in the BEAGLE models represent clusters of similar

haplotypes. Because we are confident in the genetic separation of members of the reference

panel, we are able to calculate the probability that a haplotype from a given population is

represented by a particular haplotype cluster.

III. Assign haplotype clusters to the test sample and aggregate the annotations. Given a

phased genotype, we observe which haplotype clusters the genotype belongs to and base the

emission probabilities for a population on the weighted average annotation (how often the

population reference panel belongs to the haplotype cluster, weighted so that each SNP in the

window contributes equally).

IV. Weight the emission probabilities by population.We use results from our held-out testing

data set to tune the emission probabilities so that the model produces the most accurate results

possible for each population.

HMMs are used in a number of existing approaches for estimating ancestral proportions (Maples 2013).

The key part of our method is step III, where we use rich haplotype models in each window, annotated

with population labels from the haplotypes in our reference panel, to assign a likelihood over all

population labels to the haplotypes in our test sample. It is worth noting that our method lends itself to

high-throughput region inference, as steps I through IV above—learning the haplotype models from a

large training set and then annotating them with the reference panel populations—need only be carried

out once.

3.5 Accounting for Phase Error

We use the HMM described above (Figure 3.2) to identify populations whose probability of assignment is

virtually zero for one parent or the other, and we remove those from further consideration, but our final

estimates are based on a more complicated HMM that simultaneously explains both haplotypes inherited

from the parents. We need this more complicated model because we cannot be certain that every

genome is completely separated into DNA inherited from each parent, since SideView™ cannot phase in

places where an individual has no DNA matches.



Figure 3.3: State transitions in an HMM representing K=3 populations. The HMM we use in practice explains the DNA inherited

from both parents simultaneously. This figure illustrates the states in a model with the same three (green, yellow, red) populations as

the HMM in Figure 3.2. There are KxKx2 states in each window. Each state represents the population inherited from parent 1 (top

color of each state), parent 2 (middle), and whether or not parent 1 corresponds to haplotype 1 (bottom). Only one state is shown on

the left, and possible transitions to all states in the next window (right). We only consider states such that the DNA inherited from at

least one parent keeps the same population assignment.

Figure 3.3 shows the set of states necessary for the HMM we use. Each state represents the population

that explains the DNA inherited from both parents, and we also assign one parent to haplotype 1 in the

phased data and the other parent to haplotype 2 and allow those phase assignments to change from

window to window. The resulting HMM has many more states, and each state represents the population

that explains parent #1's DNA (K possible values, if there are K populations), the population that explains

parent #2's DNA (K possible values), and which haplotype corresponds to which parent (2 possible

values). The HMM has K✕K✕2 states for each genomic window and all possible transitions between them

such that, at most, one parent's state changes population. While the constraint to one parent changing

populations is consistent with biology—recombination events in different parents are independent—it is



put in place mostly for practical reasons of efficient inference. The transition probability in this HMM

(Figure 3.3) depends on two additional variables: the probability of changing phase from window to

window and the probability of changing back. These values are also learned for each individual.

The parameters of the HMM are set based on several iterations of an expectation-maximization algorithm

based on a standard HMM learning approach called Baum-Welch. For each individual, the algorithm

learns (i) the probability of changing populations (for each parent), (ii) the overall distribution of population

assignments (for each parent), (iii) the probability of changing phase (and changing back). The emission

probabilities for each state are fixed throughout the process. Although the model allows for phase error,

the model most often learns that the optimal estimate includes no phase corrections, and therefore the

estimates for most Ancestry DNA customers are based on the SideView™ phase and parent assignments

exactly.

After learning, we are able to compute through our HMM model:

1. The Viterbi path through the model. This is the single most likely path, according to the

parameters of the model, which assigns one population to the DNA inherited from each parent in

each window of the genome.

2. Probabilistic path samples through the model. These paths also assign one population to each

parent in each window, and they are only slightly less likely (according to the model) than the

Viterbi path, so they help describe how much or how little of a given population may still be

consistent with the individual's DNA.

We report the sum population assignment for each parent according to the most likely path and report a

most probable range based on 1,000 path samples taken from the model (see Section 4.5).

4. Assessing Ancestral Regions Performance

While we are developing and optimizing the estimation process, and after we finish, we repeatedly

measure how well our method performs. Basically, we want to measure how close our process gets to the

right answer through rigorous evaluation using a wide variety of test cases with known origins.



We use four different approaches to validate our models: 1) customer-focused simulation, 2) single-origin

customers from our testing and validation sets, 3) tree-based validation, and 4) polygon creation. Each of

these are described below.

4.1 Customer-focused Simulation

In any data science application, how performance is measured is the key to the algorithm’s success. We

use a data-centric approach to construct our testing and validation data to match the customer experience

in our database.

We leverage ancestral journeys (for more information see the Genetic Communities white paper), to

identify customers who share similar family histories. By aggregating 10s to 100s of thousands of family

trees, we are able to establish accurate admixture patterns that differ for each group. We can then

simulate separate test and evaluation data sets of genotype information, where we will also know the

region results. For populations with admixture patterns that are not captured in the pedigrees, such as

African American or Latin American populations, we use historical information to guide the simulations,

such as in Mooney et al. (2023).

After analyzing the simulated data with our model, we compare the output from our model to the expected

results. We measure three different statistics in aggregate and per population:

1) Overlap – the observed percentage for a region divided by the expected percentage for a region.

Note that if the observed percentage exceeds the expected, the overlap will be above 100%.

2) Recall – the proportion of expected regions that are observed in the output.

3) Precision – the proportion of observed regions that are expected.

As we tune our models, we balance the performance of the overlap, recall, and precision statistics overall

and per population. For example, as we increase the recall and overlap for one region, we often see a

decrease in the precision at the same time. Our goal is to maintain as high recall as possible, while not

sacrificing precision.

https://support.ancestry.com/s/article/AncestryDNA-White-Papers?language=en_US


We note that recall and precision behave differently for very small values. Thus, we use a cut-off of 7.5%

to report on performance. Expected and observed values below 7.5% have a much higher error and

missing rate than those above 7.5%.

Here, we report a few numbers from a handful of our simulations from our final evaluation:

Table 4.1: Results from a simulation of 2,800 individuals reflecting histories similar to customers from

Victoria Australia, London UK, Ontario Canada, Quebec Canada, New York USA, Maine USA,

Pennsylvania USA, Wisconsin USA, Kentucky USA, South Carolina USA, Western States USA, Utah

USA, and New Orleans Louisiana.

Region Mean Overlap Precision Recall
Cornwall 52.7% 92.9% 79.6%

Denmark 87.2% 65.4% 96.0%

Central & Eastern Europe 85.7% 97.8% 97.8%

England & Northwestern Europe 106.8% 99.6% 98.5%

France 74.6% 100% 85.0%

Germanic Europe 97.4% 97.6% 96.0%

Ireland 104.2% 98.4% 99.2%

The Netherlands 76.8% 62.6% 74.0%

Norway 96.6% 96.8% 95.3%

Scotland 98.7% 97.6% 92.1%

Sweden 108.2% 95.1% 96.4%

Wales 115.0% 87.3% 96.4%

Per individual (mean) 78.6% 97.2% 96.1%

Table 4.2: Results from a simulation of 600 individuals reflecting histories similar to African American

customers from the Southern United States, British Caribbean, and Haiti.

Region Mean Overlap Mean Precision Mean Recall
Eastern Bantu Peoples 62.1% 100% 99.4%

Southern Bantu Peoples 106.5% 100% 100%

Cameroon 107.8% 99.4% 100%

Western Bantu Peoples 57.8% 99.4% 100%

England & Northwestern Europe 78.0% 100% 93.7%

Germanic Europe 77.7% 90.1% 87.0%



Ireland 118.3% 95.5% 100%

Ivory Coast & Ghana 76.0% 100% 100%

Mali 95.9% 100% 98.5%

Nigeria 97.6% 100% 99.1%

Senegal 90.2% 100% 100%

Yorubaland 117.0% 100% 100%

Per individual (mean) 73.0% 99.6% 98.5%

Overall, we see very strong performance across all regions, with most having precision values greater

than 90% and overlap between 75% and 115%. In some regions, like Denmark and the Netherlands, we

see precision values closer to 60%. We also see very strong recall and precision values across the Africa

regions, suggesting that values >7.5% indicate a very confident link between a customer and that

population.

We see that, on an individual average, the expected percentages overlap with 75-80% of the estimated

percentages, which is a 10% improvement over the 2023 model.

4.2 Single-origin evaluation

Another way to access the performance of our model is through our evaluation dataset. For each of our

reference panels, we create a testing dataset of up to 500 people to train the model weights, and a

validation dataset of up to 500 people to evaluate the final model. Like the individuals used to create our

reference panels, the people included in the testing and validation datasets are believed to be of a single

origin, and are expected to receive 100% assignment to a specific region. We can assess each region for

overlap, precision, and recall as before. After fully tuning our model, we measured the following

performance metrics (regions not updated in the 2024 model are not shown):

Table 4.3: Results from 20,962 single-origin evaluation individuals.

Region Mean Overlap Mean Precision Mean Recall
Western Himalayas & the Hindu Kush 67.6% 61.6% 98.9%

Cornwall 70.0% 97.8% 100%

Denmark 80.9% 63.4% 100%

Western Bantu Peoples 66.5% 49.4% 100%

Benin & Togo 91.2% 76.2% 100%

Gujarat 95.2% 67.8% 100%



Gulf of Khambhat 87.4% 75% 100%

Southern India 96.3% 36.9% 100%

Southwest India 98.5% 82.9% 100%

Lower Central Asia 95.7% 86.9% 100%

Northern Iraq & Northern Iran 99.4% 83.2% 100%

The Netherlands 69.3% 73.1% 100%

Central Nigeria 95.4% 78.0% 100%

North-Central Nigeria 90.2% 77.5% 100%

Nigeria 91.6% 71.7% 100%

Indo-Gangetic Plain 87.2% 84.9% 100%

Northern & Central Philippines 72.1% 87.7% 100%

Luzon 97.1% 52.9% 100%

Central & Southern Philippines 80.8% 78.1% 100%

Western Visayas 62.6% 38.5% 100%

Russia 84.5% 95.3% 100%

Sephardic Jews 93.2% 100% 100%

The Deccan & the Gulf of Mannar 97.0% 56.1% 100%

Twa 98.9% 100% 100%

Yorubaland 89.1% 89.6% 100%

Central West Africa 88.7% 71.1% 100%

Aegean Islands 85.8% 94.6% 100%

Anatolia & the Caucasus 90.3% 70.0% 100%

Arabian Peninsula 85.0% 93.2% 99.7%

Baltics 96.6% 72.8% 100%

Basque 97.0% 39.8% 100%

Bangladesh 93.7% 77.7% 100%

Burusho 34.5% 100% 100%

Cameroon 84.4% 56.7% 100%

Cyprus 98.0% 98.8% 100%

Dai 64.9% 55.6% 100%

Eastern Bantu Peoples 76.3% 70.7% 100%

Eastern Europe 88.2% 43.6% 100%

Eastern European Roma 86.0% 100% 100%

Egypt 96.0% 97.6% 100%

England & Northwestern Europe 79.7% 34.5% 100%

Ethiopia & Eritrea 93.5% 38.2% 100%

Finland 96.9% 77.5% 100%



France 74.8% 91.8% 100%

Germanic Europe 73.6% 32.8% 100%

Greece & Albania 83.2% 88.0% 100%

Guam 68.0% 100% 100%

Iceland 97.0% 97.3% 100%

Iran/Persia 85.7% 84.6% 100%

Ireland 96.8% 51.4% 100%

Ivory Coast & Ghana 61.1% 61.1% 100%

Japan 95.7% 32.4% 100%

Ashkenazi Jews 99.1% 99.2% 100%

Khoisan, Aka & Mbuti Peoples 96.0% 56.3% 100%

Korea 97.9% 94.0% 100%

Levant 97.5% 78.0% 100%

Mainland Southeast Asia 79.8% 94.5% 100%

Mali 94.7% 84.8% 100%

Malta 97.2% 100% 100%

Maritime Southeast Asia 53.9% 81.0% 100%

Melanesia 98.1% 84.6% 100%

Mongolia & Upper Central Asia 86.3% 98.6% 100%

Nepal & the Himalayan Foothills 89.9% 100% 100%

Nigerian Woodlands 92.5% 98.7% 100%

Nilotic Peoples 76.7% 74.1% 100%

Northern Africa 96.7% 96.9% 100%

Northern Asia 51.1% 85.7% 100%

Northern Italy 81.1% 98.9% 100%

Norway 87.0% 82.1% 100%

Portugal 93.8% 77.6% 100%

Sardinia 98.8% 100% 100%

Scotland 69.3% 61.0% 100%

Senegal 95.6% 85.7% 100%

Somalia 81.1% 77.8% 100%

Southern Bantu Peoples 96.4% 82.9% 100%

Southern Italy & the Eastern Mediterranean 96.4% 54.5% 100%

Southern Japanese Islands 85.7% 97.0% 100%

Spain 85.6% 70.8% 100%

Sweden 86.9% 60.4% 100%

The Balkans 70.4% 67.0% 100%



Tibetan Peoples 97.9% 60.0% 100%

Vietnam 94.8% 94.7% 100%

Wales 93.1% 83.8% 100%

Per individual (mean) 87.9% 82.5% 100%

For some regions, such as Burusho and Northern Asia, the numbers are not as high, with average

assignments of 34% and 51% to the correct region, respectively. However, even if the prediction accuracy

falls short of 100% for some regions, the remaining percentage is still assigned to nearby regions. For

example, individuals from Burusho might get some assignments to the Indo-Gangetic Plain region, and

individuals from Northern Asia might get some level of assignment to Mongolia & Upper Central Asia.

Similarly, when precision is low, we find that it is people from nearby-regions that get the extra

assignment.

We found that the majority of our regions have precision and overlap that are both greater than 75%.

Additionally, we found that the average overlap for single-origin people is 87.9%, which is a significant

improvement from 2023 (greater than 12%).

In summary, although our models are tuned based on admixed samples, we are pleased to report an

overall improvement in 2024 in accuracy for people of single-origin.

4.3 Tree-based validation

An independent way to validate our model is to look at the ancestral regions results of people with deep

genealogical roots back to the same country or part of a country. To find these individuals, we use

customer-created family trees and look for customers who have consented to research and have all of

their ancestors from the same country. Ideally, we’d only look at people with all of their grandparents (or

older) from the same country, but due to low numbers for some countries we sometimes include people

where only their parents are from the same country.

Customers who are not in the reference panel and have deep trees tracing back to a single country are

expected to have high assignments to the regions associated with that country, and this is what we

generally find for all 481 regions of the world that we considered. For example, Figure 4.1 shows the

average assignments for 200 customers with all four grandparents (or older) born in Germany (top) and

200 customers with all four grandparents born in South Korea (bottom). As you can see, while most of



their assignment is to the expected corresponding regions, Germanic Europe and Korea, other regions do

appear in small but significant amounts. These analyses help ensure that results for people from a

geographic area agree with expectations.

Figure 4.1 Average assignments based on grandparents’ birth location. Region assignment distribution for customers with all



four grandparents born in the same country. Germany (top), and South Korea (bottom). Dark green is the middle 50th percentile,

with the distribution bucketed and colored by percentile.

4.4 Regional Polygon Construction

The process we use to create polygons for each of our 107 regions also helps to validate our model.

Where possible, we use the known geographic locations of our samples to guide how we create the

regions. Figure 4.5 shows an example of the results and geographic information used to define the

polygon for our England & Northwestern Europe region.

Figure 4.2: Using geographic sample locations to draw regional polygons. Panel A shows the distribution of the England &

Northwestern Europe region predicted for a set of samples with geographic information. Samples are assigned to grids of 0.5

degrees longitude by 0.5 degrees latitude based on the average birth location of their grandparents. The color of each grid

squarepoint on the map represents the average percentage of England & Northwestern Europe for samples from each grid. Panel B



shows the maps after filling in missing grids using an imputation method and smoothing the results. Panel C shows the information

processed with further smoothing, creating the outlines representing the ancestry regions shown to customers. Panel D shows the

final polygon presented in a customer’s results.

In Figure 4.2A, we show the amount of our England & Northwestern Europe region assigned to a

combination of reference panel evaluation samples and customers with deep roots from the same

country. Figure 4.2B shows the results after imputing values to fill in gaps in our map grid and applying

smoothing methods to make the plot less spotty. It is clear from the plot that there is a gradient of

assignment in this area that is centered in England and quickly tapers off in surrounding areas. For

example, the next level of concentration, represented by light blue in the image, is in northeastern France

and Belgium. The gradient continues to diminish as represented in purple, with the borders reaching as

far away as Northern Italy, Norway, and Switzerland.

Manual edits are sometimes performed on polygons to better align them with geography like narrow

peninsulas or when the polygons may imply finer-scale population structure than the underlying genetic

data support. Additionally, polygons representing some of our regions have hand-drawn components to

describe minority populations that may not be explicitly defined by geography. For regions which are data

driven, these polygons are a powerful tool that we use to validate each one of our regions.

4.5 Reporting uncertainty of estimated values

As mentioned in Section 3.5, we report a range for each ancestral region that we deliver to customers.

For example, we might report someone as 40% England & Northwestern Europe with a range of 30-60%.

This means that the model reports the most likely estimate of 40% England & Northwestern Europe, but

that our model also supports an estimate anywhere between 30% and 60% England & Northwestern

Europe. We run a separate analysis to validate the range results in our simulation datasets to ensure that

the expected value is captured within the range most of the time.

5. Finer Scale Subregion Inference

Algorithms that infer your ancestral origins, like the one described above, are designed to assign portions

of your DNA to various global populations based on similarity to people in a representative reference

panel.



However, even specific and commonly assigned regions, like England and Northwestern Europe, can be

frustratingly broad to customers and family genealogists when they are looking for records in a region to

further their family history research and discovery.

In order to provide even greater resolution and specificity for ancestral origins, we developed a

complementary method for connecting customers to people and places around the world—called

“subregions”. This new feature uses distinct subregion reference panels which have been created from

individuals with deep genealogical roots in a specific geographic area. We then identify short segments of

matching DNA that a customer shares with the people in the subregion reference panel. The method

leverages the principle from population genetics that people from the same population share more DNA

with each other than with people from other populations. Additionally, by focusing on shorter segments of

matching DNA, we are more likely to detect more distant (i.e., older) genetic connections. These results

can indicate a genetic connection to the people of a specific geographic area in the past several hundred

years. Overall, subregion assignments provide an orthogonal set of evidence to help customers narrow

down their search for family origins.

5.1 Construct subregion reference panels

To develop reference panels for subregions, we identify individuals who can represent more specific

geographic areas. This is made possible by Ancestry’s enormous database of genetic samples paired

with genealogical trees provided by members. The subregion reference panel candidates have

multigenerational family trees where all the ancestors are from a shared and specific geographic area.

For example, Connacht is one of the subregions contained in our Ireland ancestral region. We developed

the Connacht subregion reference panel using individuals who had multigenerational trees linked to their

DNA tests, and where the earliest ancestors (i.e., terminal nodes) in those trees were all born in

Connacht, Ireland. By combining genetic information with information from trees, we can build separate

reference panels that represent people with deep ancestral roots to a geographic area.

Our subregion method leverages the principle that people from the same population share more DNA with

each other than they do with other populations. This is most often true over large geographic distances,

for example comparing a subregion in Ireland with a subregion in Bulgaria. However, populations that are

closer in proximity may be more difficult to differentiate using genetics. This could lead to inaccurate

subregion results for customers.



To address this, we rigorously tested the precision ( ) and recall (𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
( 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 )

) for each of our subregion reference panels. In cases where we were able to𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
( 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 )

maintain a finer level of granularity to our subregions, we did so. In situations where assignments were

inconsistent or inaccurate, we merged together neighboring subregions to improve performance. For

example, in testing the Kosovo and Montenegro subregion reference panels, we found many people with

trees tracing back to Kosovo were instead assigned to Montenegro, and vice versa. By combining these

reference panels into a single Kosovo & Montenegro subregion we recovered a higher level of

performance. Overtime, as more individuals take tests and upload trees, it may be possible to revisit

these reference panels and add greater granularity to some subregions.

5.2 Calculate matching to subregion

As DNA is passed down from an initial founder to subsequent descendants, recombination breaks up the

inherited matching DNA segments. As a result, when searching for deeper ancestral connections, a living

individual is likely to share mostly short segments of matching DNA with the population of their ancestral

origins. Using our matching algorithm (see our white paper for details) we are able to confidently detect

short matching segments of DNA shared by a customer and any individuals in our subregion reference

panels. This gives us the opportunity to connect members with people and geographic areas that are part

of their more distant family history.

However, while short segments can be informative about deeper ancestral connections, it is also the case

that shorter segments of matching DNA between people are more likely to be the result of chance than

the result of a shared common ancestor. This significantly complicates the process of connecting an

individual to their ancestral subregion just by looking for matching DNA segments in a reference panel.

We therefore developed an assignment method that makes use of both a match score and a subregion

specific score threshold. The match score is calculated per individual as the average amount of DNA (in

centimorgans) shared with the subregion reference panel, selecting only the top matching reference panel

samples. We then determined a match score threshold for each subregion by evaluating precision and

recall metrics. Individuals whose amount of shared DNA with the reference panel exceeded the

subregion’s specific threshold were assigned that subregion.

https://support.ancestry.com/s/article/AncestryDNA-White-Papers?language=en_US


5.3 Evaluating score thresholds for subregion performance

Each population represented by a subregion has its own unique history, impacting features like the level

of genetic similarity within the population and similarity to other populations. Additionally, the subregion

populations are represented to a different degree in our customer base. This means the expected amount

of matching between the subregion reference panel and a person with deep ancestral roots in that area

will vary for each subregion. As a result, we needed to develop subregion specific thresholds for our

match scores to confidently assign a customer to a subregion.

Determining this threshold, however, is complicated by the fact that for most customers, we don’t have a

ground-truth for what subregion assignment to expect. Many customers have either an incomplete tree,

short tree, or no tree from which we can evaluate their expected subregion assignment. Those individuals

who do have high quality trees against which we could test our assignment were likely already included in

our reference panels.

We therefore adopted a simulation-based approach, leveraging our customer database and those

individuals whose pedigrees gave us confidence in their subregion assignment. We selected individuals

we were confident belonged to specific subregions and used them as founders of a simulated pedigree.

The simulation involved successive generations of admixture in the descendants of the founders.These

simulations allowed us to distribute the genetic signal of a specific subregion among descendants, and

still be able to trace the correct subregion assignment. Using these simulated descendents, we evaluated

precision and recall when applying various match score thresholds for each subregion. To provide the

greatest insight to customers, we established three threshold levels based on increasing precision values

of 60%, 75%, and 90%. These levels indicated a “moderate”, “strong”, and “very strong” genetic

connection to the subregion, respectively.

6. Future Refinement

While AncestryDNA is extremely proud of the updates in this release, we plan to improve the product over

time. The availability of new data, the development of new methodologies, and the discovery of new

information relating to patterns of human genetic variation will all enable future improvements to the

product.



Each new release of genetic ancestral regions will represent a step forward in our ability to give our

customers a complete description of their genetic ancestry and inform them about their genetic origins.

We hope that, like the entire team at AncestryDNA, our customers will look forward to these future

developments.
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