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1. Summary 

Reporting ancestral regions (“regions”) is one of several tools that AncestryDNA offers customers on their 
journey to discover their heritage, ancestors, and family history. Ancestral regions is a feature that 
connects users directly to the populations from which their ancestors likely came. This information can be 
used in conjunction with ancestral journeys discovered through Genetic Communities, and with 
relationships discovered through DNA Matching to better understand one’s more recent and distant past.   

AncestryDNA employs a team of highly trained scientists with backgrounds in population genetics, 
statistics, machine learning, and computational biology to develop a fast, sophisticated, and accurate 
method for estimating genetic ancestral regions. The AncestryDNA science team has advanced the 
science and technology behind the region results this year, producing an increase in both the overall 
accuracy of the results, as well as the number of regions available for assignment (from 107 regions to 
146). By adding these new regions, we provide even greater granularity to our members. 

This white paper will delve into the science behind:​
 ​
1. How our reference panel samples are chosen and the makeup of our 146 reference panels for 2025​
2. How our algorithm works to estimate a customer’s genetic ancestral origins ​
3. Some of the results from our most recent advances for inferring ancestral origins from DNA 

Glossary 

Admixed — Describing an individual or population that has origins from multiple populations.​
Allele — A variant in the DNA sequence. For example, a SNP (defined below) could have two alleles: A 

or C.​

Centimorgan (cM) — A unit of genetic length in the genome. Two genomic positions that are a 

centimorgan apart have a 1% chance during each meiosis (the cell division that creates egg cells or 

sperm) of experiencing a recombination event between them. ​

Chromosome — A large, inherited piece of DNA. Humans typically have 23 pairs of chromosomes with 

one copy of each pair inherited from each parent.​
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IBD — A term abbreviated from “Identity-by-descent.” When two individuals share DNA, we can say they 

have DNA that is IBD, if there is evidence that they share that DNA because they inherited it from a 

recent ancestor. ​
Genome — All of someone’s genetic information; the DNA on all chromosomes.​

Genotype — A general term for observed genetic variation either for a single site or the whole genome. 

For example, we can refer to the results for a customer from our microarray as a “customer’s genotype.” ​

Haplotype — A stretch of DNA along a chromosome containing a group of nucleotide polymorphisms.​

Hidden Markov model (HMM) — A statistical model for determining a series of hidden states based on a 

set of observations.​

Locus/Loci — A location or locations in the genome. It could be a single site or a larger stretch of DNA.​

Microarray — A DNA microarray is a way to analyze hundreds of thousands of DNA markers all at once.​

Nucleotide — DNA is composed of strings of molecules called nucleotides (also called bases). There are 

four different types, and they are usually represented by their initials: A, C, G, T.​

Population — A group of people.​

Phasing — The assignment of DNA to contiguous segments corresponding to the DNA inherited from 

Mom or Dad. This is done with an algorithm.​
Recombination — Before chromosomes are passed down from parent to child, each pair of 

chromosomes usually exchange long segments between one another and then are reattached in a 

process called recombination.  

Reference Panel — A set of people whose DNA is typical of DNA from a certain place—people native to 

a place or group. The DNA of these people is used as a representation of the typical DNA from this place 

for the purposes of studying population genetics and history.​

Single nucleotide polymorphism (SNP) — A single position (nucleotide) in the genome where different 

variants (alleles) are seen in different people. 

2. Constructing Population Reference Panels 

2.1 Reference Panels are Critical to Calculate Ancestral Regions 

The basic premise behind ancestral regions inference can be summarized as follows. Two haplotypes 

from the same geographic region or the same population will share more DNA with one another than will 

two haplotypes from different regions or groups. So two people with a historical connection to Portugal will 

have more DNA in common than a person from Korea will have with a person from Portugal.  



In practice, region inference involves comparing a person’s DNA to the DNA of multiple reference 
panels. A reference panel is composed of individuals whose DNA is representative of a population. Our 

algorithm compares a person’s DNA segments to these reference panels to determine the best-matching 

populations. If, for example, a section of a person’s DNA looks most similar to DNA of people in our 

Norway reference panel, that section is said to be from Norway, and so on. The end result is a 

genome-wide report where individual sections of DNA are associated with one of the 146 regions in our 

reference panel. The similarity breakdown is provided as a total percentage breakdown, and also as a 

per-parent and per-chromosome report.  

The accuracy of our results depends on the quality of our reference panel. Because of this, AncestryDNA 

has invested a significant amount of effort in collecting DNA data from populations across the globe and 

developing the best possible set of reference samples.  

The rest of Section 2 describes the steps taken to develop our current reference panel.  

2.2 Developing Reference Panels in Regions of the World with Significant Amounts of Data 

AncestryDNA has genome-wide genotype data for over 25 million customers from around the world. 

Additionally, many people in our database have connected family trees to their DNA results, providing 

invaluable contextual information about the origins of these individuals. The wealth of DNA and 

genealogical information allows us to create robust reference panels for many global populations, 

especially in regions of the world where our customers’ origins are concentrated. 

However, it is problematic to rely solely on self-reported genealogical information from customer trees 

when deciding what individuals to include in the reference panel and which populations they should 

represent. Relying just on samples that have connected family trees would limit our number of reference 

panel candidates too dramatically. As well, family trees can be difficult to verify and can carry errors. 

Therefore, we’ve adopted a strategy that is primarily driven by genetic relatedness (IBD) among people 

and populations, while still incorporating information in the aggregate from ancestral region results and 

family trees. Specifically, we leverage our Genetic Communities technology and the 3,500+ DNA-based 

communities we have discovered as the bases for reference panels. 

Our Genetic Communities technology identifies networks of Ancestry members that are highly 

interconnected due to sharing DNA from a common set of ancestors. We are also able to look at family 

https://www.ancestrycdn.com/support/us/2024/02/communitieswhitepaper2024.pdf


tree information in aggregate for these networks to identify shared places of origin, patterns of movement, 

statistically enriched surnames, and genetic ancestral region results. These data provide insight into the 

specific identity and story of these genetically related groups. 

Using the networks we discover as a basis for ancestral region reference panels has several benefits. 

First, the networks are entirely driven by genetics and self-organized population structure. Identifying 

individuals to represent a population based on patterns of genetic similarity between these individuals is 

preferable to hand-curating a set of individuals based on self-reported data such as origins, language, or 

ethnicity. Second, when we do need to rely on information about origins, language, and ethnicity for 

identifying and annotating the reference populations, we are using information that has been averaged 

from hundreds or thousands of network members. By averaging the data, we remove the disproportionate 

effects of outliers or the need to extensively verify several hundred individual records. 

A complicating factor is that individuals’ membership in these networks are non-exclusive. Specifically, an 

individual may belong to multiple different networks, representing various branches of their family tree. 

For example, if a person has one parent of Irish descent and another parent of Italian descent, they will 

likely belong to both Irish and Italian networks. Using this individual in any Italian or Irish reference panel 

would adversely impact the performance of our analysis. 

In order to optimize our selection of reference panel candidates, we therefore adopted several filtering 

approaches based exclusively on genetic data. 

1.​ We mapped the networks to corresponding world regions, and regions with rich data were 

selected for this reference panel development approach. 

2.​ We considered reference panel candidates for each region and selected samples that were more 

likely to descend from a single origin population, i.e., do not have recently admixed family origins. 

We did this by filtering out individuals who had a weak genetic connection to their assigned 

networks (based on their number of matches to other members of that network)  and who were 

assigned to multiple networks from different populations (e.g., Irish and Italian). 

3.​ We filtered individuals based on their current genetic results, removing individuals with 

exceptionally high levels of additional off-target regions. Specifically, we identified the most 

common regions shared among individuals of each network, and through an iterative analysis, 

determined specific regions and percentage thresholds to ensure robust reference panels. For 

example, consider that in England, most individuals with deep family roots to the south and east, 

and who could be high quality reference panel candidates, will likely carry between 3-5% 

Scandinavian DNA. This is a result of the historical invasions of England by Germanic and Viking 



tribes 1500 years ago. Despite these individuals having a genetic connection outside of England, 

we would still want to consider them as reference panel candidates. 

4.​ We filtered out individuals who had a low number of matches with others in the network, and who 

had a proportionally high number of matches to individuals in other networks. Specifically, for 

each sample we calculated the number of matches to others in the network and to other 

networks. We then examined the distribution of these metrics and identified a percentile cutoff 

below which all individuals were excluded. The effect was to remove individuals who showed a 

low level of genetic connectedness to the specific region and a high level of genetic 

connectedness to outside regions. 

5.​ As a final check on the individuals selected for a region’s reference panel, we aggregated the 

birth location data for these individuals and their ancestors and plotted the locations on a map. 

We found strong signals of enrichment for ancestor birth locations in the geographic regions of 

interest, and very little signal outside the region of interest. 

Using the filtering approach based on IBD-sharing outlined above, we identify the individuals who are best 

suited to include in the reference panel. Given the large number of samples available at AncestryDNA, we 

subsample to a maximum of 5000 individuals per reference panel to train our model (“training set”), along 

with 500 testing samples to tune parameters (“testing set”), and 500 samples for final validation 

(“validation set”).  

2.3 Developing Reference Panels in regions with limited data 

In some regions of the world, AncestryDNA has not yet acquired enough customer samples to rely on the 

process described above (Section 2.2). In these regions, AncestryDNA relies on a collection of labeled 

samples from worldwide populations to construct training, testing, and validation sets.  

We build up this collection using several different data sources including:  

●​ 1,000 samples from 49 worldwide populations from a public project called the Human Genome 

Diversity Project (HGDP) (Cann et al. 2002; Cavalli-Sforza 2005) 

●​ 2,500 samples from 19 populations from the 1000 Genomes Project (McVean et al., 2012) 

●​ 900 samples from 84 populations from the Human Origins dataset (Lazaridis et al., Nature 2014).  

●​ Proprietary AncestryDNA reference collections 

●​ AncestryDNA samples from customers who consented to participate in the research project 

https://support.ancestry.com/s/article/AncestryDNA-Research-Project?language=en_US


Once this collection has been compiled, we again use unsupervised techniques that leverage shared IBD 

to identify groups of individuals with shared origins. We then use aggregated meta-data (e.g., 

self-reported ethnicity, spoken language) to identify the groups. We sample a subset of the total 

individuals to include in our reference panel. 

2.3 Developing Reference Panels in Regions with significant admixture 

In some parts of the world, indigenous people carry DNA originating from more than one continent. For 

example, people of Amerindian descent in North and South America may also have some DNA from 

Europe and Africa. When creating reference panels for the Americas and Oceania, we use only the parts 

of the genome inherited from the indigenous populations. We do this by looking at our previous 

assignments to select only the segments of DNA where both chromosomes have an assignment to an 

indigenous population. So, whereas most of our regions use DNA from the entire genome of each 

reference panel candidate, when creating reference panels for populations in areas that are now admixed 

we only use a fraction of each person’s genomes. The regions where we employ this approach are: 

Bolivia & Peru 

Colombia & Venezuela 

Mexico 

Canada & USA 

Yucatan Peninsula 

Central 

Chile 

Ecuador 

Panama & Costa Rica 

Eastern South America 

Puerto Rico 

New Zealand Māori 

Aboriginal and/or Torres Strait Islander 

Hawaii 

Samoa 

Tonga 



For two other regions, Cuba and Haiti & Dominican Republic, we use windows where only one 

chromosome has assignment to the indigenous population. We then combine single chromosomes from 

two different people in the same window. This creates a window homozygous for the indigenous DNA.  

2.4 Reference Panel Quality Control 

For each sample, we analyze a set of approximately 300,000 SNPs that are shared between the Illumina 

OmniExpress platform and the Illumina HumanHap 650Y platform (which was used to genotype HGDP 

samples). Samples with large amounts of missing data are removed. We also remove samples which are 

likely to degrade the performance of the reference panel. Samples can be removed because 1) they are 

closely related to another reference sample, or 2) the underlying genetic information about a sample’s 

origins disagrees with the sample labels, as determined through principal component analysis (PCA) 

(Jackson 2003, Patterson 2006) and our previous genetic analyses (Figure 2.1). 



 

Figure 2.1: PCA Analysis on European Panel Candidates. Scatter plot of the first two components from a principal component 

analysis (PCA) of candidate European samples for the AncestryDNA reference panel. Visual inspection of PCA is useful for 

numerous aspects of data QC. First, it can be used to identify individual outliers, such as the Italian samples (green squares) that 

appear near the Portugal and Spain (yellow and blue triangles, respectively) cluster. It can also be useful for identifying poor sample 

grouping. Finally, it can reveal regions where there is limited genetic separation and clusters overlap (e.g., England, Ireland, Wales, 

and Scotland clusters) and regions that can be further subdivided. 

2.5 Updated Reference Panel 

The updated AncestryDNA ancestral regions reference panel contains 185,063 samples carefully 

selected as described above to represent 146 global regions (Table 2.1), each with a unique genetic 

profile. As a comparison, our previous panel of 116,830 samples represented 107 distinct global regions. 



Table 2.1: The AncestryDNA Regions Reference Panel 

Region 

Senegal 

Mali 

Ivory Coast & Ghana 

Benin & Togo 

Yorubaland 

Central West Africa 

Central Nigeria 

North-Central Nigeria 

Nigeria 

Nigerian Woodlands 

Cameroon 

Western Bantu Peoples 

Twa 

Southern Bantu Peoples 

Eastern Bantu Peoples 

Nilotic Peoples 

Ethiopia & Eritrea 

Somalia 

Khoisan, Aka & Mbuti Peoples 

North Africa 

Egypt 

Arabian Peninsula 

Levant 

Cyprus 

Anatolia & the Caucasus 

Iran/Persia 

Lower Central Asia 

Northern Iraq & Northern Iran 

Burusho 

Indo-Gangetic Plain 

Western Himalayas & the Hindu Kush 



Gujarat 

Gulf of Khambhat 

Southern India 

Southwest India 

The Deccan & the Gulf of Mannar 

Bengal 

Nepal & the Himalayan Foothills 

Tibetan Peoples 

Northern Asia 

Mongolia & Upper Central Asia 

Korea 

Japan 

Southern Japanese Islands 

Northern China 

Western China 

Southwestern China 

Central & Eastern China & Taiwan 

Southern China 

Dai 

Mainland Southeast Asia 

Maritime Southeast Asia 

Vietnam 

Northern & Central Philippines 

Central & Southern Philippines 

Luzon 

Western Visayas 

Guam 

Melanesia 

Aboriginal and/or Torres Strait Islander Peoples 

Tonga 

Samoa 

Hawaii 

New Zealand Māori 

Arctic 



Canada & United States 

Mexico 

Yucatan Peninsula 

Central America 

Panama & Costa Rica 

Cuba 

Haiti & Dominican Republic 

Puerto Rico 

Colombia & Venezuela 

Ecuador 

Bolivia & Peru 

Chile 

Eastern South America 

Ashkenazi Jews in Eastern Europe & Russia 

Ashkenazi Jews in Central & Southeastern Europe 

Sephardic Jews in the Eastern Mediterranean 

Sephardic Jews in Northern Africa 

Finland 

Sweden 

Denmark 

Norway 

Iceland 

Estonia & Latvia 

Lithuania 

Russia 

Northeastern Poland 

North Central Europe 

Southern Poland 

Eastern Czechia 

Slovakia 

Slovenia 

Western Ukraine 

Western Balkans 

Northwestern Balkans 



Romania 

Southwestern Balkans 

Eastern European Roma 

Ionian Islands 

Northern & Central Greece 

Southern Greece 

Albania 

Aegean Islands 

Crete 

Malta 

Sardinia 

Southern Italy 

Sicily 

Northwestern Italy 

Northeastern Italy 

Central Italy 

Acadia 

France 

Brittany, France 

Quebec 

The Netherlands 

Northwestern Germany 

Southern Germany 

Russian Germans 

Basque 

Canary Islands 

Northern Spain 

Spain 

Portugal 

Azores 

Madeira 

Cornwall 

West Midlands 

Devon & Somerset 



North East England 

Southeastern England & Northwestern Europe 

East Midlands 

Southern Wales 

Northern Wales & North West England 

Isle of Man 

Central Scotland & Northern Ireland 

North East Scotland 

Hebrides & Western Highlands, Scotland 

Connacht, Ireland 

Donegal, Ireland 

Leinster, Ireland 

Munster, Ireland 

Total 
 

3. AncestryDNA Ancestral Regions Algorithm 

3.1 Algorithm Intuition and Assumptions 

After establishing the reference panels, the next step is to train and tune the algorithm that infers a 

customer’s ancestral regions by comparing nearly 300,000 selected single nucleotide polymorphisms 

(SNPs) from their DNA to those of the reference panel. In this comparison algorithm, we assume that an 

individual’s DNA is a mixture of DNA from some combination of the 146 identified populations. To 

illustrate this concept, we show a cartoon example in Figure 3.1, where, because of recombination, a 

customer inherits stretches of DNA from her four grandparents who, in this example, each come from four 

“single source” reference populations.  

Because DNA is passed down from one generation to the next in long segments, it is likely that the DNA 

at two nearby loci in the genome were inherited from the same person and therefore the same population 

(for more details on DNA inheritance see our matching white paper). This means we can get more 

https://www.ancestrycdn.com/support/us/2020/08/matchingwhitepaper.pdf


accurate results by looking at multiple nearby SNPs together as a haplotype, instead of looking at each 

SNP in isolation. Our algorithm takes advantage of this to greatly improve our estimates.  

Our approach divides the customer’s genome into 1,001 windows and assumes that the DNA inherited 

from each parent in each window comes from exactly one population (the windows are small enough that 

this will almost always be true). We compare the customer's DNA to the reference panels for each 

window, and combine information from all the windows to estimate what overall portion of the customer’s 

genome came from each population using a hidden Markov model (HMM), described in Sections 3.3-3.5 

below.  

 

Figure 3.1: Inheritance of DNA from different populations. On the left, we present a three-generation genetic family tree. For 

each individual, we show two vertical bars representing the two copies of a single chromosome present in each individual. These 

bars are colored to show the reference population from which they inherited their DNA. Each of the four grandparents (solid bars, 

top row) has inherited 100% of their DNA from a single population that is different from the other three. The DNA is passed to the 

parents and finally to the customer, who, through the process of recombination and assortment, ends up inheriting a shuffled set of 

chromosomes from each parent. The colors show that the customer’s DNA is a mixture of the DNA inherited from their four 

grandparents, with long stretches inherited from the same grandparent. On the right, we show that to obtain a customer’s ancestral 

regions, we divide the customer’s genome into small windows (illustrated with dividing black horizontal lines). For each window we 



assign a single population to the DNA within that window inherited from each parent, one population for each parental haplotype. 

Our algorithm will assign a population to each window based on how well it matches genomes in the reference panel.  

3.2 Phasing SNP Data 

At AncestryDNA, we use microarrays to obtain DNA data from customer samples. We look at 

approximately 700,000 individual locations of DNA (SNPs) on chromosomes 1-22 and the X 

chromosome. It is important to understand that every person inherits two alleles, one from each parent, at 

each of these 700,000 sites, and that we read these sites independently. For example, we may see an A 

and a T at position 1, a G and a G at position 2, and so on. A crucial step in region inference is to 

separate which letters were inherited from different parents—a process called phasing. Our cutting-edge 

technology SideView separates DNA inherited from each parent across the entire genome. Once 

separated, we infer the ancestral regions inherited from each parent using the approximately 300,000 

SNPs that are shared with all members of the reference panel. 

SideView uses DNA shared with distant relatives across the genome to aid in the phasing. The 

correctness of the DNA phasing for an individual therefore relies, in part, on that person sharing enough 

DNA with other people in our database. Since this is not always the case, we design the hidden Markov 

model (HMM) we use for region inference to allow for incorrect phasing. In the next section, we explain 

how an HMM is useful in region inference, first with a model to analyze one parent individually, and then 

we show how we extend that model to account for phase error. 

3.3 Principles of a Hidden Markov Model 

Our goal is to assign each window of the genome to two of the 146 reference panels (one for each 

parent). A hidden Markov model is well-suited for this task because it can represent thousands of 

interrelated variables but still perform efficient inference—using a technique called dynamic 

programming—as each variable depends on only a few others. An HMM is a set of states and transitions 

connected as a directed acyclic graph (the transitions move forward along the genome and never cycle 

back). Each transition is associated with a probability, and each state has an emission probability, which 

allows the HMM to compute the posterior probability (i.e., taking all populations and windows into 

account) of individual states, individual transitions, and paths through the model. Figure 3.2 illustrates an 

HMM representing the DNA inherited from one parent for three reference populations (represented by 

green, yellow, and red) and six windows (our complete analysis uses 146 populations and 1,001 

windows). It also shows a path through the model (the thick blue transitions). We use HMMs to infer the 

https://support.ancestry.com/s/article/SideView-Technology?language=en_US


most likely path (called the Viterbi path), which assigns exactly one population to each window of the 

genome. We also use HMMs to take path samples—alternative paths that are also likely—to get a better 

idea of how much the assignment to each population might vary according to the model. A summation of 

these alternative paths is reported to the customer as a set of ranges for each of these region results. 

Figure 3.2: The states and transitions of an HMM representing the possible populations that explain the DNA inherited from 

one parent in each of several windows. This illustration includes three populations (green, yellow, and red), and six windows. The 

arrows represent transitions between states, and each transition will have an associated probability. By using the transition 

probabilities, an HMM can compute the likelihood of each of these states and determine the most likely path through the model 

(illustrated by the bold blue arrows), which assigns one population to each window across the genome. 

The transition probabilities in this HMM depend on how often a population assignment should change, 

and, when they do change, how likely the new population is to be chosen. A transition to the same 

population is generally more probable in our model because the population that explains the DNA 

inherited from a parent is likely to be the same for several consecutive windows. However, the number of 

populations varies from person to person. Our HMM learns the probability of changing population states 

from the genotype data. When a transition does change populations, the transition probability depends 

also on the proportion throughout the genome of the population being transitioned to, which our approach 

also learns for each individual person. 

The state emission probabilities in this HMM depend on the similarity between the DNA inherited from the 

parent and that of a reference panel corresponding to the population the state represents. We describe 

how we measure this similarity in Section 3.4 below. 

https://support.ancestry.com/s/article/AncestryDNA-Ethnicity-Ranges?language=en_US


3.4 Emission Probabilities 

Determining how likely the DNA in a window came from a population (the emission probability) is 

described in more detail in our paper Ancestry Inference Using Reference Labeled Clusters of 

Haplotypes.  

Briefly, our approach includes the following steps:  

I.​ Create haplotype models for each window. Using a set of about 50,000 individuals 

representing diverse populations, we infer BEAGLE (Browning 2007) haplotype cluster models for 

each window. 

II.​ Annotate the reference panel. The states in the BEAGLE models represent clusters of similar 

haplotypes. Because we are confident in the genetic separation of members of the reference 

panel, we are able to calculate the probability that a haplotype from a given population is 

represented by a particular haplotype cluster.  

III.​ Assign haplotype clusters to the test sample and aggregate the annotations. Given a 

phased genotype, we observe which haplotype clusters the genotype belongs to and base the 

emission probabilities for a population on the weighted average annotation (how often the 

population reference panel belongs to the haplotype cluster, weighted so that each SNP in the 

window contributes equally).  

IV.​ Weight the emission probabilities by population. We use results from our held-out testing 

data set to tune the emission probabilities so that the model produces the most accurate results 

possible for each population.  

HMMs are used in a number of existing approaches for estimating ancestral proportions (Maples 2013). 

The key part of our method is step III, where we use rich haplotype models in each window, annotated 

with population labels from the haplotypes in our reference panel, to assign a likelihood over all 

population labels to the haplotypes in our test sample. It is worth noting that our method lends itself to 

high-throughput region inference, as steps I and II above—learning the haplotype models from a large 

training set and then annotating them with the reference panel populations—need only be carried out 

once.  

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-021-04350-x
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-021-04350-x


3.5 Accounting for Phase Error  

We use the HMM described above (Figure 3.2) to identify populations whose probability of assignment is 

virtually zero for one parent or the other, and we remove those from further consideration, but our final 

estimates are based on a more complicated HMM that simultaneously explains both haplotypes inherited 

from the parents. We need this more complicated model because we cannot be certain that every 

genome is completely separated into DNA inherited from each parent, since SideView cannot phase in 

places where an individual has no DNA matches.  

 

Figure 3.3: State transitions in an HMM representing K=3 populations. The HMM we use in practice explains the DNA inherited 

from both parents simultaneously. This figure illustrates the states in a model with the same three (green, yellow, red) populations as 

the HMM in Figure 3.2. There are  states in each window. Each state represents the population inherited from parent 1 𝐾 × 𝐾 × 2

(top color of each state), parent 2 (middle), and whether or not parent 1 corresponds to haplotype 1 (bottom). Only one state is 

shown on the left, and possible transitions to all states in the next window (right). We only consider states such that the DNA 

inherited from at least one parent keeps the same population assignment. 



Figure 3.3 shows the set of states necessary for the HMM we use. Each state represents the population 

that explains the DNA inherited from both parents, and we also assign one parent to haplotype 1 in the 

phased data and the other parent to haplotype 2 and allow those phase assignments to change from 

window to window. The resulting HMM has many more states, and each state represents the population 

that explains parent 1's DNA (K possible values, if there are K populations), the population that explains 

parent 2's DNA (K possible values), and which haplotype corresponds to which parent (2 possible 

values). The HMM has    states for each genomic window and all possible transitions between 𝐾 × 𝐾 × 2

them such that, at most, one parent's state changes population. While the constraint to one parent 

changing populations is consistent with biology—recombination events in different parents are 

independent—it is put in place mostly for practical reasons of efficient inference. The transition probability 

in this HMM (Figure 3.3) depends on two additional variables: the probability of changing phase from 

window to window and the probability of changing back. These values are also learned for each 

individual.  

The parameters of the HMM are set based on several iterations of an expectation-maximization algorithm 

based on a standard HMM learning approach called Baum-Welch. For each individual, the algorithm 

learns (i) the probability of changing populations (for each parent), (ii) the overall distribution of population 

assignments (for each parent), (iii) the probability of changing phase (and changing back). The emission 

probabilities for each state are fixed throughout the process. Although the model allows for phase error, 

the model most often learns that the optimal estimate includes no phase corrections, and therefore the 

estimates for most Ancestry DNA customers are based on the SideView phase and parent assignments 

exactly. 

After learning, we are able to compute through our HMM model:  

1.​ The Viterbi path through the model. This is the single most likely path, according to the 

parameters of the model, which assigns one population to the DNA inherited from each parent in 

each window of the genome.  

2.​ Probabilistic path samples through the model. These paths also assign one population to each 

parent in each window, and they are only slightly less likely (according to the model) than the 

Viterbi path, so they help describe how much or how little of a given population may still be 

consistent with the individual's DNA. 

We report the sum population assignment for each parent according to the most likely path and report a 

most probable range based on 1,000 path samples taken from the model (see Section 4.5). 



4. Assessing Ancestral Regions Performance 

While we are developing and optimizing the estimation process, and after we finish, we repeatedly 

measure how well our method performs. Basically, we want to measure how close our process gets to the 

right answer through rigorous evaluation using a wide variety of test cases with known origins. 

We use four different approaches to validate our models: 1) customer-focused simulations, 2) 

single-origin customers from our testing and validation sets, 3) tree-based validation, and 4) polygon 

creation. Each of these are described below.  

4.1 Customer-focused Simulations 

In any data science application, how performance is measured is the key to the algorithm’s success. We 

use a data-centric approach to construct our testing and validation data to match the customer experience 

in our database. 

We leverage ancestral journeys (for more information see the Genetic Communities white paper), to 

identify customers who share similar family histories. By aggregating 10s to 100s of thousands of family 

trees, we are able to identify accurate patterns of admixture between populations that differ for each 

group. We can then simulate separate test and evaluation data sets of genotype information based on 

these admixture patterns, where we will also know the region results. For populations with admixture 

patterns that are not captured in the pedigrees, such as African American or Latin American populations, 

we use historical information to guide the simulations, such as in Mooney et al. (2023).  

After analyzing the simulated data with our model, we compare the output from our model to the 

expected, ground-truth results. We measure three different statistics in aggregate and per population: 

1)​ Overlap – the observed percentage for a region divided by the expected percentage for a region. 

Note that if the observed percentage exceeds the expected, the overlap will be above 100%.  

2)​ Recall – the proportion of expected regions that are observed in the output. E.g., For 100 

simulated people, their pedigrees include an ancestor from Norway. Only 75 of these people have 

Norway in their results. The recall for Norway would be . 75 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
 100 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 =  75%

https://support.ancestry.com/s/article/AncestryDNA-White-Papers?language=en_US


3)​ Precision – the proportion of observed regions that are expected. E.g., For 100 simulated 

people, their results include Leinster, Ireland. Only 90 of these people have an ancestor from 

Leinster in their pedigree. The precision for Leinster, Ireland would be . 90 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑
 100 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 =  90%

As we tune our models, we balance the performance of the overlap, recall, and precision statistics overall 

and per population. For example, as we increase the recall and overlap for one region, we often see a 

decrease in the precision at the same time. Our goal is to maintain as high recall as possible, while not 

sacrificing precision.  

We note that recall and precision behave differently for regions that are assigned at a very low 

percentage. Therefore, we use a cut-off of 5% assignment to a region to report on performance. Expected 

and observed values that include regions assigned below 5% have a much higher error and missing rate 

than those that include regions assigned above 5%.  

Here, we report a few numbers from a handful of our simulations from our final evaluation: 

Table 4.1: Results from a simulation of 30,249 admixed European and African American individuals.  

Region Mean Overlap Recall Precision 

Leinster, Ireland 67.76% 75.84% 78.85% 

Donegal, Ireland 120.27% 98.90% 79.82% 

Connacht, Ireland 112.26% 95.15% 75.35% 

Munster, Ireland 121.41% 95.48% 86.31% 

North East Scotland 70.09% 65.64% 68.21% 

Hebrides & Western Highlands, Scotland 75.31% 78.51% 83.51% 

Central Scotland & Northern Ireland 126.73% 89.04% 88.81% 

Southern Wales 116.50% 97.42% 83.47% 

Isle of Man 50.98% 93.98% 98.73% 

West Midlands 115.97% 79.98% 66.86% 

East Midlands 96.64% 79.03% 92.73% 

Southeastern England & Northwestern Europe 98.71% 82.38% 96.75% 

Northern Wales & North West England 115.84% 88.01% 87.06% 

North East England 88.52% 84.02% 37.44% 

Devon & Somerset 67.69% 59.68% 78.66% 



Cornwall 68.34% 72.24% 70.18% 

Madeira 75.86% 98.97% 99.31% 

Azores 82.52% 97.19% 97.67% 

Portugal 126.44% 98.99% 64.20% 

Spain 70.33% 98.36% 93.22% 

Canary Islands 51.49% 96.81% 100.00% 

Northern Spain 86.86% 97.87% 82.51% 

Basque 94.62% 100.00% 98.83% 

Southern Germany 79.47% 77.38% 91.28% 

Northwestern Germany 109.74% 84.13% 70.03% 

The Netherlands 101.12% 97.48% 35.80% 

Quebec 71.18% 83.93% 98.13% 

Acadia 105.82% 99.85% 99.96% 

Brittany, France 32.50% 46.58% 97.14% 

France 39.49% 71.51% 88.57% 

Northwestern Italy 102.70% 96.00% 89.78% 

Northeastern Italy 92.87% 96.26% 82.76% 

Southern Italy 84.97% 86.30% 98.41% 

Central Italy 113.71% 93.41% 86.61% 

Sicily 68.75% 79.25% 99.92% 

Sardinia 105.17% 100.00% 81.82% 

Malta 116.30% 99.43% 100.00% 

Ionian Islands 79.34% 100.00% 97.73% 

Crete 93.45% 98.96% 98.96% 

Aegean Islands 93.67% 98.69% 91.52% 

Southern Greece 92.62% 95.29% 75.83% 

Northern & Central Greece 87.83% 98.33% 97.51% 

Albania 78.26% 99.38% 96.99% 

Southwestern Balkans 120.57% 100.00% 58.72% 

Romania 68.36% 98.81% 88.30% 

Slovenia 90.64% 100.00% 64.29% 

Northwestern Balkans 95.67% 97.07% 80.57% 

Western Balkans 68.53% 96.15% 98.04% 

Southern Poland 93.31% 90.20% 84.59% 



North Central Europe 117.43% 94.19% 44.90% 

Northeastern Poland 89.67% 88.04% 58.70% 

Eastern Czechia 70.43% 100.00% 7.06% 

Slovakia 77.84% 94.64% 44.92% 

Western Ukraine 78.18% 94.85% 53.18% 

Russia 68.40% 94.82% 99.80% 

Lithuania 96.83% 99.55% 66.27% 

Estonia & Latvia 100.55% 99.34% 87.79% 

Iceland 108.82% 100.00% 97.24% 

Norway 125.08% 97.39% 95.00% 

Denmark 78.99% 84.44% 63.96% 

Sweden 115.62% 95.61% 95.85% 

Finland 114.19% 100.00% 98.11% 

Khoisan, Aka & Mbuti Peoples 101.45% 100.00% 100.00% 

Eastern Bantu Peoples 63.43% 97.22% 100.00% 

Southern Bantu Peoples 105.20% 100.00% 100.00% 

Twa 119.69% 100.00% 100.00% 

Western Bantu Peoples 57.49% 97.63% 100.00% 

Cameroon 115.18% 100.00% 99.32% 

Nigerian Woodlands 104.20% 99.48% 100.00% 

Nigeria 109.87% 97.06% 100.00% 

North-Central Nigeria 98.64% 96.77% 100.00% 

Central Nigeria 115.99% 99.15% 99.15% 

Central West Africa 126.26% 100.00% 100.00% 

Yorubaland 125.52% 100.00% 100.00% 

Benin & Togo 129.29% 100.00% 97.18% 

Ivory Coast & Ghana 75.33% 88.10% 100.00% 

Mali 87.96% 97.31% 100.00% 

Senegal 90.96% 100.00% 100.00% 

Per Individual (mean) 73.30% 88.17% 88.30% 
 

Overall, we see very strong performance across all regions, with most having precision values greater 

than 90% and overlap between 80% and 120%. In only a few regions, like Slovakia and Eastern Czechia, 

do we see precision values below 50%, demonstrating that the majority of the time we report the correct 



regions to users based on their origins. We also see very strong recall and precision values across the 

Africa regions, suggesting that assignments greater than 5% to these regions indicate a very confident 

link between a customer and that population.  

We see that, on an individual level, the average expected percentage overlap is 73.03%, which is 

consistent with the performance of our 2024 model. 

4.2 Single-origin evaluation 

Another way to access the performance of our model is through our evaluation dataset. For each of our  

reference panels, we create a testing dataset of up to 500 people to train the model weights, and a 

validation dataset of up to 500 people to evaluate the final model. Like the individuals used to create our 

reference panels, the people included in the testing and validation datasets are believed to be of a single 

origin, and are expected to receive 100% assignment to a specific region. We can assess each region for 

overlap, precision, and recall as before. After fully tuning our model, we measured the following 

performance metrics (Table 4.3). Regions not updated in the 2025 model are not shown.  

Table 4.3: Results from 17,625 single-origin evaluation individuals.  

Region Overlap Precision 

Leinster, Ireland 57.57% 39.01% 

Donegal, Ireland 92.77% 33.78% 

Connacht, Ireland 83.17% 44.79% 

Munster, Ireland 95.45% 43.85% 

North East Scotland 72.80% 82.75% 

Hebrides & Western Highlands, Scotland 64.00% 37.43% 

Central Scotland & Northern Ireland 87.09% 30.36% 

Southern Wales 94.29% 69.68% 

Isle of Man 58.44% 100.00% 

West Midlands 72.69% 37.68% 

East Midlands 76.69% 50.25% 

Southeastern England & Northwestern Europe 73.57% 23.04% 

Northern Wales & North West England 72.00% 47.62% 

North East England 74.89% 54.35% 

Devon & Somerset 59.43% 55.95% 



Cornwall 71.17% 61.10% 

Madeira 81.90% 89.66% 

Azores 91.34% 91.69% 

Portugal 92.43% 45.62% 

Spain 57.27% 33.12% 

Canary Islands 54.42% 96.72% 

Northern Spain 66.89% 29.07% 

Basque 94.46% 85.14% 

Southern Germany 71.53% 35.19% 

Northwestern Germany 79.82% 36.46% 

Russian Germans 96.95% 100.00% 

The Netherlands 89.35% 42.60% 

Quebec 86.99% 96.71% 

Acadia 87.02% 89.50% 

Brittany, France 17.15% 100.00% 

France 45.70% 34.12% 

Northwestern Italy 94.36% 80.23% 

Northeastern Italy 91.42% 83.91% 

Southern Italy 89.53% 55.87% 

Central Italy 91.43% 72.14% 

Sicily 78.01% 95.06% 

Sardinia 98.44% 97.30% 

Malta 97.90% 97.25% 

Ionian Islands 77.48% 85.71% 

Crete 92.28% 92.00% 

Aegean Islands 87.87% 87.44% 

Southern Greece 88.54% 64.02% 

Northern & Central Greece 81.60% 51.85% 

Albania 74.40% 36.78% 

Eastern European Roma 97.15% 100.00% 

Southwestern Balkans 97.18% 45.90% 

Romania 78.64% 90.91% 

Slovenia 79.07% 54.05% 

Northwestern Balkans 71.49% 71.46% 



Western Balkans 72.07% 37.87% 

Southern Poland 85.06% 34.18% 

North Central Europe 62.85% 46.76% 

Northeastern Poland 70.28% 25.90% 

Eastern Czechia 74.53% 70.18% 

Slovakia 66.23% 60.42% 

Western Ukraine 74.13% 49.70% 

Russia 73.90% 94.96% 

Lithuania 89.20% 46.67% 

Estonia & Latvia 94.76% 23.12% 

Iceland 96.93% 93.59% 

Norway 95.74% 72.99% 

Denmark 72.59% 48.94% 

Sweden 92.56% 64.77% 

Finland 98.48% 75.12% 

Sephardic Jews in Northern Africa 93.74% 70.87% 

Sephardic Jews in the Eastern Mediterranean 72.77% 86.67% 

Ashkenazi Jews in Central & Southeastern Europe 90.22% 47.39% 

Ashkenazi Jews in Eastern Europe & Russia 65.44% 63.53% 

Per Individual (Mean) 84.29% 72.01% 

 

Overall, we found that the majority of our new and updated regions have precision greater than 60% and 

overlap greater than 80%. The per individual results are also comparable with values from our 2024 

model, indicating a consistent performance year-to-year. In summary, although our models are tuned 

based on admixed samples, we are pleased to report a consistently strong experience for people of 

single-origin.  

4.3 Tree-based validation 

An independent way to validate our model is to look at the ancestral regions results of people with deep 

genealogical roots back to the same country or part of a country. To find these individuals, we use 

customer-created family trees and look for customers who have consented to research and have all of 

their ancestors from the same country. Ideally, we’d only look at people with all of their grandparents (or 



older) from the same country, but due to low numbers for some countries we sometimes include people 

where only their parents are from the same country.  

Customers who are not in the reference panel and have deep trees tracing back to a single country are 

expected to have high assignments to the regions associated with that country, and this is what we 

generally find for the more than 500 regions of the world that we considered. For example, Figure 4.1 

shows the average assignments for approximately 200 customers with all four grandparents (or older) 

born in Northern Germany (top) and approximately 200 customers with all four grandparents born in 

Norway (bottom). As you can see, while most of their assignment is to the expected corresponding 

regions, Northwestern Germany and Norway respectively, other regions do appear in small but 

appreciable amounts. These analyses help ensure that results for people from a geographic area agree 

with expectations.  

 



 

Figure 4.1 Average assignments based on grandparents’ birth location. Region assignment distribution for customers with all 

four grandparents born in the same country or region. Northern Germany (top), and Norway (bottom). Dark blue is the middle 50th 

percentile, with the distribution bucketed and colored by percentile. The analysis indicates that on average individuals with roots to 

northern Germany will see ~75% Northwestern Germany and ~10% Netherlands, and those with roots to Norway will see ~95% 

Norway. In both cases, individuals tend to see some small percentage assignment to other neighboring regions. 

4.4 Regional Polygon Construction 

The process we use to create polygons for each of our 146 regions also helps to validate our model. 

Where possible, we use the known geographic locations of our samples to guide how we create the 

regions. Figure 4.2 shows an example of the results and geographic information used to define the 

polygon for our Southeastern England & Northwestern Europe region. 

           



           

Figure 4.2: Using geographic sample locations to draw regional polygons. Panel A shows the distribution of the Southeastern 

England & Northwestern Europe region predicted for a set of samples with geographic information. Samples are assigned to grids of 

0.5 degrees longitude by 0.5 degrees latitude based on the average birth location of their grandparents. The color of each grid point 

on the map represents the average percentage of Southeastern England & Northwestern Europe for samples from each grid. Panel 

B shows the maps after filling in missing grids using an imputation method. Panel C shows the information processed with further 

smoothing, creating the outlines representing the ancestral regions shown to customers. Panel D shows the final polygon presented 

in a customer’s results. 

In Figure 4.2A, we show the amount of our Southeastern England & Northwestern Europe region 

assigned to a combination of reference panel evaluation samples and customers with deep roots from the 

same country. Figure 4.2B and C show the results after imputing values to fill in gaps in our map grid and 

applying smoothing methods to make the plot less spotty. It is clear from the plot that there is a gradient of 

assignment in this area that is centered in England and quickly tapers off in surrounding areas. For 

example, the highest level of assignment, represented by a green yellow in Figure 4.2C, is in northeastern 

France and Belgium. The gradient continues to diminish as represented in purple, with the borders 

reaching as far away as Northern Italy, Norway, and Switzerland. 

Manual edits are sometimes performed on polygons to better align them with geography like narrow 

peninsulas or when the polygons may imply finer-scale population structure than the underlying genetic 

data support. Additionally, polygons representing some of our regions have hand-drawn components to 

describe minority populations that may not be explicitly defined by geography. For regions which are data 

driven, these polygons are a powerful tool that we use to validate each one of our regions.  



4.5 Reporting uncertainty of estimated values  

As mentioned in Section 3.5, we report a range for each ancestral region that we deliver to customers. 

For example, we might report someone as 40% Southeastern England & Northwestern Europe with a 

range of 30-60%. This means that the model reports the most likely estimate of 40% Southeastern 

England & Northwestern Europe, but that our model also supports an estimate anywhere between 30% 

and 60% Southeastern England & Northwestern Europe. We run a separate analysis to validate the range 

results in our simulation datasets to ensure that the expected value is captured within the range most of 

the time. 

5. Future Refinement 

While AncestryDNA is extremely proud of the updates in this release, we plan to improve the product over 

time. The availability of new data, the development of new methodologies, and the discovery of new 

information relating to patterns of human genetic variation will all enable future improvements to the 

product. Each new release of genetic ancestral regions will represent a step forward in our ability to give 

our customers a complete description of their heritage and inform them about their genetic origins. We 

hope that, like the entire team at AncestryDNA, our customers will look forward to these future 

developments. 
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